Yolo-6D(Real-Time Seamless Single Shot 6D Object Pose Prediction)理解

Yolo-6D是一种实时的6D目标位姿预测方法,无需多阶段处理或精确的目标纹理模型。通过全新的CNN结构,直接预测3D边界框顶点在2D图像的投影位置,利用PnP算法估计3D位姿。相较于其他算法,Yolo-6D在目标数量增加时,运行时间保持稳定,且无需后期处理。然而,该方法需要预先知道3D模型信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文中所有灰色引用部分都是在阅读文章时的思考,阅读时可直接跳过灰色部分,不会影响内容

本文创新点

  1. 从一个RGB图像预测他的6D位姿估计,不需要多阶段也不需要检验多种假设,也不需要精确的目标纹理模型,精准度足够不需要后期处理。
  2. 提出了一个新的CNN结构,直接预测目标的射影顶点的2D图像位置,然后用PnP算法估计目标的3D位姿。

相比之下其他的算法

  1. 运行速度随着检测物体的数量直线上升,而作者的方法运行时间和目标数量关系不大,保持稳定。
  2. 现存的一些算法都需要微调他们的结果,这样就导致了每个物体检测都超时了,作者不需要微调速度更快

但是
作者的方法需要先验3D模型知识

作者Ideal来源

ta mu gong, o mu zi a

作者方法

没什么很新的方法,就把方法和训练写一起了

核心思想

用网络预测3D包围盒角落的射影的2D位置,这涉及到预测比2D包围盒回归更多的2D点。得到了2D的角落射影,再加上先验3D点信息,直接用PnP算法就是能求出6D位姿

Deep3Dbox只用了四个点,难道是预测的物体的中心点?再加上一些看似立体的、Deep3Dbox并没有预测的点?

算法流程

点的信息

用9个控制点参数化每个目标的3D模型,好处:
这几个参数能用在任意形状和拓扑的刚体上,九个点展开到2D图像很方便,而且对许多人造物体有语义意义。

咋还用这么多?八个不够吗,中心点有啥用
答:也不一定非要用9点法表示,也可以用其他方法
在这些点里面,选择紧凑的3D包围盒的八个角点来拟合3D模型。
第九个点当形心
有了形心是不是比较好判断方向?

网络结构

用全卷积加工输入的2D图片,如Figure 1 (a)
在这里插入图片描述
F i g u r e   1   ( a ) Figure\ 1\ (a) Figure 1 (a)
用的是v2的yolo,共使用23个卷积层和5个最大池化层,选择 S = 13 S=13 S=13。还允许网络高层添加转移层来使用fine-grained特征。从维度是 26 × 26 × 512 26\times 26 \times 512 26×26×512的层提取出了特征,卷积成 13 × 13 × 256 13 \times 13 \times 256 13×13×256后和 13 × 13 × 1024 13\times 13 \times 1024 13×13×1024特征图结合。

为了获得更精细的特征?很像残差,这样对预测小尺度物体有好处,是为了这个吗?

在这里插入图片描述

当网络的下采样用32因子的时候,就用32的倍数的分辨率作为图象输入 { 320 , 352 , . . . , 608 } \{320,352,...,608\} { 320,352,...,608},以此来增强对不同size物体的鲁棒性。

然后将图片分到2D规则网格 S × S S\times S S×S中去。

在这里插入图片描述
F i g u r e   1   ( c ) Figure\ 1\ (c)

### YOLO-6D与YOLO-Pose的主要区别 #### 1. **应用场景** YOLO-6D主要应用于三维目标检测和六自由度(6D)位姿估计任务,其核心目的是通过二维图像推断出物体的空间位置和方向[^3]。而YOLO-Pose则专注于人体姿态的关键点检测以及久坐人群的姿态分析,旨在提升对人体关节关键点的识别精度[^2]。 #### 2. **输出形式** YOLO-6D的输出不仅包括边界框的位置信息(x, y),还涉及深度(z轴)、旋转角度等参数,用于描述物体在三维空间中的具体方位[^3]。相比之下,YOLO-Pose更关注于人体关键点的精确定位,例如肩部、肘部、膝盖等部位的像素级坐标,并以此为基础计算姿态置信度得分[^2]。 #### 3. **网络架构设计** YOLO-6D通过对传统YOLO框架进行了扩展,在原有基础上增加了专门针对6D位姿回归的任务分支,利用卷积神经网络提取特征并预测九个特定的坐标点来表示对象的方向向量[^3]。与此同时,YOLO-Pose引入了改进版的注意力机制(MSAM和BSAM),强化了通道间的关系建模能力,从而显著提高了对于复杂背景条件下人体姿势的理解水平。 #### 4. **性能指标** 在评估标准方面,由于两者解决的是完全不同的计算机视觉子领域问题,因此它们各自采用了一套独立衡量体系。比如,YOLO-6D可能会依据ADD误差或者Reprojection Error作为评价准则之一;而对于YOLO-Pose来说,则更多依赖诸如mAP@50这样的统计学概念来进行定量比较[^2]。 ```python # 示例代码展示两种方法可能存在的差异之处 class YOLO_6D(nn.Module): def forward(self, x): # 特征提取部分省略... output = self.regression_head(features) # 输出包含xyz及rotation info return output class YOLO_Pose(nn.Module): def forward(self, x): attention_map = self.attention_module(x) keypoints = self.keypoint_head(torch.mul(x, attention_map)) return keypoints ``` #### 5. **技术难点** 实现高精度的6D位姿估计面临诸多挑战,如光照变化影响表面纹理可见性、自遮挡现象造成部分区域不可见等问题都需要特别处理。另一方面,尽管现代深度学习模型能够很好地捕捉静态场景下的人体动作模式,但在动态视频序列中保持时间一致性仍然是一个开放的研究课题。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值