自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 零基础实战:用自定义天气图片数据打造专属识别模型 (附本地预测)——深度学习入门(3)

本文介绍了使用自定义天气数据集训练CNN模型的完整流程。首先讲解了环境搭建和PyTorch安装,重点说明了如何收集整理天气图片数据(如晴天、雨天等类别)。通过代码演示了数据预处理步骤,包括统一图像尺寸、标准化处理和数据增强。文章详细展示了如何划分训练集/测试集,并构建数据加载器。最后强调了模型训练完成后,可以用于识别本地新图片的实际应用价值。全文以实践为导向,帮助读者掌握从数据准备到模型部署的关键技能。

2025-06-05 18:02:55 858

原创 【保姆级教程】PyTorch实战CIFAR-10:从零构建CNN,手撕卷积/池化计算!——深度学习入门(2)

本文介绍了使用CNN进行CIFAR-10彩色图像分类的完整流程。首先通过PyTorch搭建环境并加载数据,对CIFAR-10数据集进行预处理和可视化。文章重点讲解了CNN网络的设计思路,包括卷积层、池化层和全连接层的结构与作用。代码实现了一个三层卷积网络,每层包含卷积、ReLU激活和最大池化操作。通过推导计算过程,帮助读者深入理解CNN的特征提取机制。该网络最终通过全连接层输出10分类结果,为彩色图像识别任务提供了实践方案。

2025-06-03 18:11:49 873

原创 手把手教你用CNN实现MNIST手写数字识别——深度学习入门(1)

本文介绍了一个基于PyTorch的MNIST手写数字识别实战项目。主要内容包括:1. 选用MNIST数据集的原因分析,包括数据质量高、特征复杂度适中等优势;2. 环境配置与GPU加速设置;3. 数据预处理详解,对比Tensor转换、PIL图像和NumPy数组三种格式差异;4. 数据加载器(DataLoader)的配置与优化技巧。项目通过可视化分析和代码实践,帮助深度学习新手掌握图像分类任务的基本流程和方法论,为后续复杂任务打下基础。

2025-05-28 17:53:41 585

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除