- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
0. 引言
在之前的文章中,我们已经掌握了如何构建最基本的卷积神经网络(CNN),并手动推导了核心层的计算过程,打下了扎实的基础。不过,前两篇文章的项目实践,我们使用的都是PyTorch自带的现成数据集(如MNIST、FashionMNIST或CIFAR-10)来进行模型的训练和识别。
但在实际应用中,我们更需要的往往是用自己收集的特定数据去训练模型。 那么,如何用自定义数据集来训练我们的CNN模型呢? 这正是本篇文章要解决的核心问题!
本文将详细讲解从零开始准备自定义数据集,到使用PyTorch加载和处理这些数据,再到训练一个CNN模型的完整流程。更重要的是,我们不止于训练,文章最后将利用训练好的模型,实际识别一张存储在你电脑本地的新图片,完成从数据到部署的关键一步。
准备好解锁这项核心技能了吗?让我们开始吧!
1. 环境搭建与依赖库准备
- PyTorch框架安装与GPU加速设置
如果设备上支持GPU就使用GPU,否则使用CPU(一般游戏本都有GPU)
【超详细教程】2024最新Pytorch安装教程(同时讲解安装CPU和GPU版本) - 依赖库导入与硬件检查(torch.cuda验证)
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,random,cv2,numpy
import matplotlib.pyplot as plt
from PIL import Image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2. 准备你的专属天气数据集
2.1 定义目标类别 (What to Recognize?)
- 明确你希望模型识别的天气类型(e.g., sunny, cloudy, rainy, snowy, foggy, thunderstorm)。建议4-6类作为起始。
- 强调:类别定义清晰是基础!
2.2 收集图像数据 (Where to Find Data?)
- 方法1:爬虫抓取(注意版权与道德!)
- 提示可利用爬虫框架(如requests+BeautifulSoup/Scrapy)从免费图库(如Unsplash, Pexels, Flickr CC许可图片)按关键词搜索下载。
- 强调质量要求:图片清晰、能典型代表该天气、多样性(不同场景、角度、时间)。
- 方法2:手动收集/整理已有照片 (更推荐初学者)
- 从自己手机、相机、网络相册中挑选符合定义的天气图片。
2.3 数据清洗与整理 (Cleaning & Organizing)
- 检查与筛选: 剔除模糊、无关、类别错误的图片。
- 统一格式: 将所有图片转换为常用格式(如.jpg, .png)
- 目录结构 (至关重要!):
- 创建一个主目录(weather_dataset)。
- 在主目录下为每个天气类别创建一个单独的子文件夹。
- 将所有对应类别的图片放入相应的子文件夹。
- 示例:weather_dataset/
├── cloudy/
│ ├── cloudy001.jpg
│ ├── cloudy002.jpg
│ └── …
├── rain/
├── shine/
├── sunrise/
2.4 数据加载与小批量数据查看
运行这段代码之前需要先把data文件夹和ipynb文件/py文件放在同一个文件夹内,"./data/"表示的是相对路径。
data_dir = pathlib.Path('./data/')
# 获取所有子目录的路径对象(过滤掉文件)
subdir_paths = [path for path in data_dir.iterdir() if path.is_dir()]
# 直接提取目录名(跨平台)
classeNames = [path.name for path in subdir_paths]
classeNames # [['cloudy', 'rain', 'shine', 'sunrise']]
# 指定图像文件夹路径
image_folder = './data/cloudy/'
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))
# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
img_path = os.path.join(image_folder, img_file)
img = Image.open(img_path)
ax.imshow(img)
ax.axis('off')
# 显示图像
plt.tight_layout()
plt.show()
输出结果:
3. 数据预处理
3.1 调整格式统一尺寸
从输出结果可以看出图像尺寸并不相同,我们后续需要对图像大小处理成相同大小的。
接下来到数据处理部分,由于我们需要对图像进行多次处理,所以这里用compose串联多个图片变换。关于transforms.Compose的更多介绍可以参考
torchvision.transforms.Compose()详解【Pytorch入门手册】
total_datadir = './data/'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
# torchvision.datasets.ImageFolder会自动读取该路径下的所有子文件夹,每个子文件夹对应一个类别,文件夹名称即为类别标签。
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
代码中的标准化用到的均值和标准差可以通过下面这段代码计算出来
# 创建无标准化的数据集
data_no_norm = datasets.ImageFolder(total_datadir, transform=transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor()
]))
# 计算均值和标准差
mean = 0.
std = 0.
for img, _ in data_no_norm:
mean += img.mean([1,2]) # [1,2]指定在高度(H)和宽度(W)维度上进行计算
std += img.std([1,2])
mean /= len(data_no_norm)
std /= len(data_no_norm)
print(f"Calculated mean: {mean.tolist()}")
print(f"Calculated std: {std.tolist()}")
3.2 划分训练集测试集并构建DataLoaer
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
3.3 查看数据格式
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
# 输出:Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
# Shape of y: torch.Size([32]) torch.int64
4. 构建你的天气识别模型
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
# 输入[32,3,224,224]
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
# [(224+2*0-5)/1 +1]=[220*220] [32,12,220,220]
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool1 = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.pool2 = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool1(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool2(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
构建完模型查看一下输入数据后特征图的尺寸变化
import torchinfo
from torchinfo import summary
# summary(model,(1,3,224,224))
summary(model, (3, 224, 224), batch_dim = 0, col_names = ("input_size", "output_size", "num_params"), verbose = 0)
5. 模型训练
5.1 选择优化器和损失函数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
5.2 定义模型训练和评估函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
5.3 模型训练与评估
epochs = 40
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
为了得到93%的测试集准确率,我这里训练了40个epoch。
以下是输出结果:
6. 结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
可视化结果如下:
7. 预测单张本地天气图片!
7.1 定义加载模型参数函数
# 加载模型参数
def load_model(model_path, device='cpu'):
# 初始化模型
model = Network_bn().to(device)
# 检查模型文件是否存在
if not os.path.exists(model_path):
raise FileNotFoundError(f"模型文件 {model_path} 未找到")
# 加载参数
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict)
model.eval() # 设置为评估模式
return model
7.2 图像预处理函数
# 图片预处理
def preprocess_image(image_path, image_size=224):
# 检查文件是否存在
if not os.path.exists(image_path):
raise FileNotFoundError(f"图片文件 {image_path} 未找到")
# 打开并验证图片
img = Image.open(image_path)
if img.mode != 'RGB':
img = img.convert('RGB')
# 与训练时相同的预处理流程
transform = transforms.Compose([
transforms.Resize((image_size, image_size)), # 确保与训练尺寸一致
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
return transform(img).unsqueeze(0) # 添加批次维度
7.3 预测函数
# 预测函数
def predict_weather(model, img_tensor):
with torch.no_grad():
output = model(img_tensor)
probabilities = torch.softmax(output, dim=1)
pred_class = torch.argmax(probabilities, dim=1).item()
return pred_class, probabilities.squeeze().tolist()
7.4 调用模型识别本地图片
torch.save(model.state_dict(), 'weather_model_params.pth')
# 配置路径
MODEL_PATH = 'weather_model_params.pth'
IMAGE_PATH = 'sunrise11.jpg' # 替换为您的图片路径
CLASS_LABELS = ['cloudy', 'rain', 'shine', 'sunrise'] # 必须与训练标签顺序完全一致
# 加载模型
model = load_model(MODEL_PATH, device)
print(f"✅ 模型已成功从 {MODEL_PATH} 加载")
# 预处理图像
img_tensor = preprocess_image(IMAGE_PATH).to(device)
print(f"🖼️ 已成功加载并预处理图片: {IMAGE_PATH}")
# 执行预测
pred_class, probabilities = predict_weather(model, img_tensor)
# 输出结果
print("\n" + "="*50)
print(f"预测结果: {CLASS_LABELS[pred_class]} (类别ID: {pred_class+1})")
print("类别概率:")
for i, (cls, prob) in enumerate(zip(CLASS_LABELS, probabilities)):
print(f" - {cls}: {prob*100:.2f}%")
print("="*50)
预测结果如下:
8. 总结
- 准备专属数据集:整理自己的天气图片分类数据。
- 训练个人CNN模型:使用PyTorch训练定制化图像识别模型。
- 实战本地预测:加载训练好的模型识别本地天气图片。