两阶段聚类算法:Python实现
聚类是一种常见的无监督学习方法,用于将数据分组成具有相似特征的类别。而两阶段聚类算法是一种特殊的聚类方法,它通过两个步骤来实现聚类过程。本文将使用Python编程语言实现这种聚类算法,并提供源代码。
第一步:初始聚类
在两阶段聚类算法中,第一步是初始聚类阶段。这个阶段的目标是将数据集划分成较小的初始聚类。常见的方法是使用K-means算法。
K-means算法是一种迭代算法,它将数据集划分成K个聚类,每个聚类由一个中心点表示。算法的步骤如下:
- 随机选择K个数据点作为初始的聚类中心。
- 将每个数据点分配给距离其最近的聚类中心。
- 更新聚类中心,将其设置为所属聚类的平均值。
- 重复步骤2和3,直到聚类中心不再变化或达到最大迭代次数。
下面是使用Python实现K-means算法的代码:
import numpy as np
def k_means(data, k,