【嵌入式AI开发rk3588】yolov8模型转换:pt->onnx->rknn

yolov8系列模型转换步骤

1. pt->onnx

  • 在官方给出的airockchip/ultralytics_yolov8下,配置cfg/default.yaml中task,mode,model路径:
task: segment # (str) YOLO task, i.e. detect, segment, classify, pose
mode: export # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
model: xx/yolov8n-seg.pt(自己训练的模型路径) # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
...
format: rknn
  • run engine/exporter.py转换为官方算子适应的onnx
PyTorch: starting from '' with input shape (16, 3
### RK3588平台部署YOLOv8实现图像分割 #### 准备工作 为了在RK3588平台上成功部署YOLOv8并实现图像分割功能,需先准备必要的软件环境和硬件资源。确保开发板已安装Linux操作系统,并配置好Python环境以及相关依赖库。 #### 获取模型文件 从官方GitHub仓库下载预训练好的YOLOv8权重文件用于后续转换操作。对于特定应用场景可考虑微调现有模型以提高精度[^1]。 #### 转换模型格式 由于RKNN Toolkit支持ONNX作为输入格式之一,因此可以利用`convert.py`脚本将原始`.pt`格式的PyTorch模型化为适用于Rockchip NPU加速推理的`.rknn`文件: ```bash python3 convert.py yolov8n-seg.pt rk3588 i8 ``` 此过程会读取指定路径下的YOLOv8网络结构定义与参数值,并按照目标设备特性优化生成最终可用于嵌入式端高效执行的新版本模型[^2]。 #### 编写推理程序 编写简单的C++应用程序来加载刚刚创建完成的`.rknn`文件,在实际运行时传入待处理图片数据流,通过调用API接口获取预测结果(边界框坐标、类别标签等),最后绘制标注后的可视化效果输出给用户查看。 ```cpp #include "rknn_api.h" // ...其他必要头文件... int main(int argc, char *argv[]) { // 初始化RKNN句柄... // 加载.rknn模型文件 // 设置输入张量属性 // 执行前向传播计算 // 解析输出特征图得到检测/分割信息 // 清理释放资源 return 0; } ``` 上述伪代码框架展示了基本流程,具体细节还需参照文档说明进一步完善补充[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值