题目描述
Machine Schedule
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 17544 | Accepted: 7359 |
Description
As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem.
There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0.
For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y.
Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines.
Input
The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y.
The input will be terminated by a line containing a single zero.
Output
The output should be one integer per line, which means the minimal times of restarting machine.
Sample Input
5 5 10 0 1 1 1 1 2 2 1 3 3 1 4 4 2 1 5 2 2 6 2 3 7 2 4 8 3 3 9 4 3 0
Sample Output
3
在二分图最大匹配的例题中,我们经常寻找题目里的“0要素”和“1要素”,作为解答的突破口。二分图最小覆盖的模型特点是:每条边有两个端点,二者至少选择一个。我们不妨称之为“2要素”。如果一个题目具有“2要素”特点,那么可以尝试抽象成二分图最小覆盖模型求解。
0要素:节点能分成独立的两个集合,每个集合内部有0条边。
1要素:每个节点只能与一条匹配边相连。
——李煜东《算法竞赛进阶指南》
这个题可以把机器A和机器B分别看成二分图的左边和右边,每一种状态为一个节点,而对于每一个任务,在其状态a[i]和b[i]中间连一条边,就可以得到一个二分图。求出它的最小覆盖,就等价于用尽量少的模式来执行所有的任务,而最小覆盖数即等于最大匹配数,故此题用匈牙利算法求一个二分图匹配即可解。
匈牙利算法有一个很好的博客推荐一下:https://blog.csdn.net/sunny_hun/article/details/80627351
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 11000;
int nxt[N << 2], head[N], to[N << 2], n, m, e, tot, vis[N], match[N], ans;
inline int read(){
int x = 0, f = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ 48), ch = getchar();
return x * f;
}
void add(int x, int y){
to[++ tot] = y, nxt[tot] = head[x], head[x] = tot;
}
bool dfs(int x){ //二分图匹配
for(int i = head[x]; i; i = nxt[i]){
int y = to[i];
if(!vis[y]){
vis[y] = 1;
if(dfs(match[y]) || ! match[y]){
match[y] = x; return 1;
}
}
}
return 0;
}
int main()
{
n = read();
while(n != 0){
ans = 0; tot = 0;
memset(match, 0, sizeof(match));
memset(head, 0, sizeof(head));
memset(to, 0, sizeof(to));
memset(nxt, 0, sizeof(nxt));
m = read(), e = read();
for(int i = 1; i <= e; ++i){
int no, x, y;
no = read(), x = read(), y = read() + n;
if(x != 0 && y != n) add(x, y);//坑点,两机器初始状态为mode0,故mode0可忽略不计
}
for(int i = 1; i<= n + 1; ++i){
memset(vis, 0, sizeof(vis));
if(dfs(i)) ++ans;
}
printf("%d\n", ans);
n = read();
}
return 0;
}