UVA1194 Machine Schedule / POJ1325 【最小覆盖集(二分图匹配模板)】

本文探讨了机器调度问题,特别是在计算机科学中的经典2-机器调度问题。通过将问题抽象为二分图,利用二分图最小覆盖模型和匈牙利算法,解决了在最少重启次数下完成所有工作的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Machine Schedule

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 17544 Accepted: 7359

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

The input will be terminated by a line containing a single zero. 

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

 在二分图最大匹配的例题中,我们经常寻找题目里的“0要素”和“1要素”,作为解答的突破口。二分图最小覆盖的模型特点是:每条边有两个端点,二者至少选择一个。我们不妨称之为“2要素”。如果一个题目具有“2要素”特点,那么可以尝试抽象成二分图最小覆盖模型求解。

0要素:节点能分成独立的两个集合,每个集合内部有0条边。

1要素:每个节点只能与一条匹配边相连。

                                                                                                                                            ——李煜东《算法竞赛进阶指南》

       这个题可以把机器A和机器B分别看成二分图的左边和右边,每一种状态为一个节点,而对于每一个任务,在其状态a[i]和b[i]中间连一条边,就可以得到一个二分图。求出它的最小覆盖,就等价于用尽量少的模式来执行所有的任务,而最小覆盖数即等于最大匹配数,故此题用匈牙利算法求一个二分图匹配即可解。

匈牙利算法有一个很好的博客推荐一下:https://blog.csdn.net/sunny_hun/article/details/80627351

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 11000;
int nxt[N << 2], head[N], to[N << 2], n, m, e, tot, vis[N], match[N], ans;
inline int read(){
	int x = 0, f = 1;char ch = getchar();
	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9') x = x * 10 + (ch ^ 48), ch = getchar();
	return x * f;
}
void add(int x, int y){
	to[++ tot] = y, nxt[tot] = head[x], head[x] = tot;
}
bool dfs(int x){ //二分图匹配
	for(int i = head[x]; i; i = nxt[i]){
		int y = to[i];
		if(!vis[y]){
			vis[y] = 1;
			if(dfs(match[y]) || ! match[y]){
				match[y] = x; return 1;
			}
				
		}
	}
	return 0;
}

int main()
{
	n = read();
	while(n != 0){
		ans = 0; tot = 0;
		memset(match, 0, sizeof(match));
		memset(head, 0, sizeof(head));
		memset(to, 0, sizeof(to));
		memset(nxt, 0, sizeof(nxt));
		m = read(), e = read();
		for(int i = 1; i <= e; ++i){
			int no, x, y;
			no = read(), x = read(), y = read() + n;
			if(x != 0 && y != n) add(x, y);//坑点,两机器初始状态为mode0,故mode0可忽略不计
		}
		for(int i = 1; i<= n + 1; ++i){
			memset(vis, 0, sizeof(vis));
			if(dfs(i)) ++ans;
		}
		printf("%d\n", ans);
		n = read();
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值