物理信息深度学习正迅速崛起为科研前沿热点,频繁亮相于顶级学术会议与《Nature》等权威期刊,深刻重塑科研范式。
其核心技术——物理信息神经网络(PINNs),通过将物理定律嵌入深度学习模型,在训练过程中引入物理约束,显著提升了求解复杂偏微分方程的能力。PINNs不仅减少了对大量实验数据的依赖,简化研究流程,还为跨学科问题提供了全新思路,推动高质量科研成果不断涌现。
目前,PINN已在材料科学、生物医学、气候建模等多个领域取得广泛应用,展现出强大潜力。为帮助你紧跟前沿动态,我整理了近一年内20篇PINN领域的创新论文,还没有idea的同学可以拿来研读,无偿分享,觉得有用记得点个赞~
全部论文+开源代码需要的同学看文末!
【论文1:中科院1区】A New, Physics-Informed Continuous-Time Reinforcement Learning Algorithm with Performance Guarantees
Closed-loop responses at 25% modeling error.
研究方法
RCI enabled CT-RL learning control structure.
该论文针对仿射非线性系统的控制问题,提出一种基于物理信息的连续时间强化学习(CT - RL)算法。该方法基于参考命令输入(RCI),利用系统已知的物理动力学信息和 Kleinman 算法结构,通过状态 - 动作轨迹数据进行学习,迭代求解最优控制问题,在无限时域无折扣成本下提供数据高效的最优控制解决方案。
创新点
cFVI, rFVI hyperparameter selections
-
创新学习探索方式:提出RCI学习方法,基于基本反馈控制原理,通过在参考命令输入处引入激励信号实现学习过程中的有效探索,解决了传统方法中探测噪声易被衰减、导致系统激励和数据质量差的问题。
-
数据高效的学习控制:借助Kleinman算法结构,结合状态 - 动作数据驱动学习,能够高效地处理非线性学习控制问题。在系统具有分散结构时,RCI可使算法效率进一步提升。
-
提供理论保障:证明了RCI CT - RL算法在学习收敛性、解的最优性和系统稳定性方面的理论保证,并通过全面的评估和比较,展示了该算法在仿射非线性系统最优控制中的优越性。
论文链接:https://jmlr.org/papers/volume25/24-0017/24-0017.pdf
【论文2】PINNs-MPF: A Physics-Informed Neural Network framework for Multi-Phase-Field simulation of interface dynamics
The architecture of PINNs-MPF framework
研究方法
Illustration of the denoising loss which is computed in the identified areas B and C, far from the interface .
该论文提出的PINNs-MPF 框架将物理信息神经网络(PINNs)应用于多相场(MPF)模拟。通过将 MPF 方程视为多变量时间序列问题,采用完全离散分辨率,在空间、时间和相 / 晶粒上分别处理。利用扩展的多网络并行化概念,将模拟域划分为多个批次,各批次由独立的神经网络预测,主神经网络负责协调各网络间的交互和学习传递。
创新点
PINN solution for the traveling wave interface problem against the theoretical solution.
-
优化训练策略:提出金字塔训练方法,结合数据增强原理,逐步调整网络细分层次进行训练,能快速确定最优超参数集,避免自适应加权策略,且保证训练的独立性,提升训练效果。
-
改进网络架构:扩展域分解方法,增加相方向的分解和并行化维度,并引入主神经网络管理任务和确保子网间的连续性,有效处理多相场问题的复杂性,提高计算效率和预测准确性。
-
自适应网格优化:引入自适应无网格优化(AMFO)技术,基于相场文献中的自适应网格细化概念,通过自适应重网格化、去噪损失和动态重采样,集中在界面区域采样,减少非界面区域噪声,提高模型的准确性和鲁棒性。
-
动态修正机制:针对MPF问题,引入动态相预测修正机制,将相预测除以同一批次其他相的预测之和,作为额外的约束损失项,确保训练连续性,避免使用外部修正算法,提高训练效率。
论文链接:https://www.sciencedirect.com/science/article/pii/S0955799725000888
【论文3】Physics-informed neural networks for modeling physiological time series for cuffless blood pressure estimation(Nature)
PINN model behavior under increasing number of training instances. a, b
研究方法
Physics-informed neural network (PINN)
针对从生理时间序列数据提取心血管信息这一问题,该研究构建了基于物理信息神经网络(PINNs)的模型。通过对输入和输出间已知心血管关系构建泰勒近似,将其融入神经网络训练,以最小化的真实数据进行模型训练。同时,定义了基于泰勒近似的物理损失函数,与传统监督损失函数结合,共同优化网络权重,实现从可穿戴生物阻抗数据进行连续无袖血压估计。
创新点
Parameters of the Taylor’s approximation of BP using physiological input features
-
降低数据依赖:突破传统PINNs依赖广义偏微分方程的局限,利用泰勒近似获取个性化的PDEs,融入神经网络训练,使模型在仅使用少量真实数据的情况下,仍能实现稳健的预测,减少了对大规模标记数据的需求。
-
增强模型可解释性:通过泰勒近似建立与潜在心血管动力学的关系,为网络增添可解释性。其参数在不同血压升高操作(如冷加压试验)的迭代中保持一致,并与已知心血管动力学相关联,有助于理解模型预测的生理机制。
-
提升模型性能:在连续无袖血压估计的案例研究中,该PINN模型在多个数据集上表现出色,与传统时间序列模型相比,保持了高相关性和低误差,且平均减少了15倍的真实训练数据量,在不同评估策略下也展现出优于其他模型的性能。
论文链接:https://www.nature.com/articles/s41746-023-00853-4
关注下方《AI前沿速递》🚀🚀🚀
回复“C305”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏