哇哦,果不其然,回来之后就开始拖延症了。目前准备两手抓了,一手抓深度学习,一手抓研发那些。再再再次立下flag:一边更新炼丹秘籍,一边更新研发知识。
本次更新有关nlp的知识,其实关于bert的原理的东西,我也不说很熟,不过用来做文本任务,确实很香呀,好用呀!!!
多说无益,可否一学!!!
一、数据EDA
首先来看,本次的动力源-数据!!!
本次需要三个文件,训练文件,测试文件以及标签文件。
train_dataset_path = "train.txt"
test_dataset_path = "test.txt"
label_dataset_path = "class.txt"
train_df = pd.read_csv(train_dataset_path,encoding="utf-8",sep='\t',names=["text","label"])
test_df = pd.read_csv(test_dataset_path,encoding="utf-8",sep = '\t',names=["text","label"])
label_df = pd.read_csv(label_dataset_path,encoding="utf-8",header=None,sep = '\t')
二、数据清洗
数据一般都是不干净的,所以需要对数据清洗一下,让它干干净净的送入炼丹炉中。
首先去除无标签的数据
train_df.dropna(axis=0, how='any', inplace=True)
之后对数据本身进行清洗
import re
def filter(text):
text = re.sub("[A-Za-z0-9\!\=\?\%\[\]\,\(\)\>\<:<\/#\. -----\_]", "", text)
text = text.replace('图片', '')
text = text.replace('\xa0', '') # 删除nbsp
# new
r1 = "\\【.*?】+|\\《.*?》+|\\#.*?#+|[.!/_,$&%^*()<>+""'?@|:~{}#]+|[——!\\\,。=?、:“”‘’¥……()《》【】]"
cleanr = re.compile('<.*?>')
text = re.sub(cleanr, ' ', text) #去除html标签
text = re.sub(r1,'',text)
text = text.strip()
return text
def clean_text(data):
data['text'] = data['text'].apply(lambda x: filter(x))
return data
train = clean_text(train_df)
test = clean_text(test_df)
清洗完数据之后,查看一下数据在各个类别的数量,数据分布很均衡。
三、bert准备工作
要想用bert的话,那么需要安装bert对应的包以及权重文件。本次使用keras来做,当然现在pytorch的transformers也封装了bert,等有机会整理发下。
# 安装keras支持的bert包
!pip install keras_bert
# 下载所需的bert权重参数
!wget -c https://storage.googleapis.com/chineseglue/pretrain_models/roeberta_zh_L-24_H-1024_A-16.zip
四、训练
那么,接下来就将数据喂入模型中,即可开启训练!!!
#! -*- coding:utf-8 -*-
import re, os, json, codecs, gc
import numpy as np
import pandas as pd
from random import choice
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
from keras.layers import *
from keras.callbacks import *
from keras.models import Model
import keras.backend as K
from keras.optimizers import Adam
maxlen = 512
config_path = './bert_config_large.json'
# checkpoint_path = '/export/home/liuyuzhong/kaggle/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
checkpoint_path = './roberta_zh_large_model.ckpt'
dict_path = './vocab.txt'
token_dict = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append('[unused1]') # space类用未经训练的[unused1]表示
else:
R.append('[UNK]') # 剩余的字符是[UNK]
return R
tokenizer = OurTokenizer(token_dict)
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
class data_generator:
def __init__(self, data, batch_size=8, shuffle=True):
self.data = data
self.batch_size = batch_size
self.shuffle = shuffle
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
if self.shuffle:
np.random.shuffle(idxs)
X1, X2, Y = [], [], []
for i in idxs:
d = self.data[i]
text = d[0][:maxlen]
x1, x2 = tokenizer.encode(first=text)
y = d[1]
X1.append(x1)
X2.append(x2)
Y.append([y])
if len(X1) == self.batch_size or i == idxs[-1]:
X1 = seq_padding(X1)
X2 = seq_padding(X2)
Y = seq_padding(Y)
yield [X1, X2], Y[:, 0, :]
[X1, X2, Y] = [], [], []
from keras.metrics import top_k_categorical_accuracy
def acc_top5(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=5)
def build_bert(nclass):
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
x = bert_model([x1_in, x2_in])
x = Lambda(lambda x: x[:, 0])(x)
p = Dense(nclass, activation='softmax')(x)
model = Model([x1_in, x2_in], p)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy', acc_top5])
print(model.summary())
return model
from keras.utils import to_categorical
DATA_LIST = []
# 改
for data_row in train_df.iloc[:].itertuples():
DATA_LIST.append((data_row.ocr, to_categorical(data_row.label, 10)))
DATA_LIST = np.array(DATA_LIST)
DATA_LIST_TEST = []
for data_row in test_df.iloc[:].itertuples():
DATA_LIST_TEST.append((data_row.ocr, to_categorical(0, 10)))
DATA_LIST_TEST = np.array(DATA_LIST_TEST)
def run_cv(nfold, data, data_label, data_test):
kf = KFold(n_splits=nfold, shuffle=True, random_state=520).split(data)
# 改
train_model_pred = np.zeros((len(data), 10))
test_model_pred = np.zeros((len(data_test), 10))
for i, (train_fold, test_fold) in enumerate(kf):
X_train, X_valid, = data[train_fold, :], data[test_fold, :]
# 改
model = build_bert(10)
early_stopping = EarlyStopping(monitor='val_acc', patience=3)
plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2)
checkpoint = ModelCheckpoint('./bert_dump/' + str(i) + '.hdf5', monitor='val_acc',
verbose=2, save_best_only=True, mode='max',save_weights_only=True)
train_D = data_generator(X_train, shuffle=True)
valid_D = data_generator(X_valid, shuffle=True)
test_D = data_generator(data_test, shuffle=False)
history = model.fit_generator(
train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=3,
validation_data=valid_D.__iter__(),
validation_steps=len(valid_D),
callbacks=[early_stopping, plateau, checkpoint],
)
# model.load_weights('./bert_dump/' + str(i) + '.hdf5')
# return model
train_model_pred[test_fold, :] = model.predict_generator(valid_D.__iter__(), steps=len(valid_D),verbose=1)
test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D),verbose=1)
del model; gc.collect()
K.clear_session()
# break
return train_model_pred, test_model_pred,history
最后的最后,给出本次链接github
那就下篇见!!!