Python Seaborn 绘图示例

import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns

# 创建第一个数据集
data = pd.DataFrame({
    'month': [14, 25, 25, 25, 33, 22],
    'y': [15, 14, 11, 21, 11, 25]
})

# 创建第二个数据集
b_data = pd.DataFrame({
    'c': ['A', 'A', 'B', 'B', 'C', 'C'],
    'b': [3, 5, 9, 15, 2, 15]
})

# 设置图形标题
plt.title('goods sell condition')
# 设置 x 轴标签
plt.xlabel('month')
# 设置 y 轴标签
plt.ylabel('numer')

# 绘制箱线图
sns.boxplot(data=b_data, x='c', y='b')

# 显示图形
plt.show()
代码分析
1. 导入必要的库
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns
  • matplotlib.pyplot:这是 Python 中用于绘制图形的常用库,plt 是其常用的别名,用于创建和操作图形。
  • pandas:用于数据处理和分析,pd 是其常用别名,可方便地处理和操作数据框(DataFrame)。
  • matplotlibmatplotlib 是 Python 中强大的绘图库,这里将其导入,但在代码中未直接使用 mat 进行操作。
  • seaborn:是基于 matplotlib 的统计数据可视化库,提供了更高级的绘图接口,能创建美观的统计图形,sns 是其常用别名。

2. 创建数据集 

 

import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns
  • data 是一个包含两列(month 和 y)的数据框,可用于后续的绘图操作。这里的数据可能代表了不同月份对应的某个数值(例如销售量)。
  • b_data 是另一个数据框,包含两列(c 和 b)。c 列包含分类变量(ABC),b 列包含数值变量,通常用于展示不同分类下的数值分布情况。

3. 设置图形标签 

plt.title('goods sell condition')
plt.xlabel('month')
plt.ylabel('number')
  • plt.title():设置图形的标题,这里表示商品销售情况。
  • plt.xlabel():设置 x 轴的标签,这里表示月份。
  • plt.ylabel():设置 y 轴的标签,这里表示数量

4. 绘制箱线图 

sns.boxplot(data=b_data, x='c', y='b')
  • sns.boxplot():使用 seaborn 库的 boxplot 函数绘制箱线图。
  • data=b_data:指定要使用的数据框为 b_data
  • x='c':指定 x 轴为分类变量 c
  • y='b':指定 y 轴为数值变量 b

箱线图是一种用于展示数据分布的统计图形,它可以显示数据的中位数、四分位数、异常值等信息。通过箱线图,我们可以直观地比较不同分类下数值的分布情况,例如数据的集中趋势、离散程度等。 

plt.show()
  • plt.show():用于显示绘制好的图形。

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值