import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns
# 创建第一个数据集
data = pd.DataFrame({
'month': [14, 25, 25, 25, 33, 22],
'y': [15, 14, 11, 21, 11, 25]
})
# 创建第二个数据集
b_data = pd.DataFrame({
'c': ['A', 'A', 'B', 'B', 'C', 'C'],
'b': [3, 5, 9, 15, 2, 15]
})
# 设置图形标题
plt.title('goods sell condition')
# 设置 x 轴标签
plt.xlabel('month')
# 设置 y 轴标签
plt.ylabel('numer')
# 绘制箱线图
sns.boxplot(data=b_data, x='c', y='b')
# 显示图形
plt.show()
代码分析
1. 导入必要的库
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns
matplotlib.pyplot
:这是 Python 中用于绘制图形的常用库,plt
是其常用的别名,用于创建和操作图形。pandas
:用于数据处理和分析,pd
是其常用别名,可方便地处理和操作数据框(DataFrame)。matplotlib
:matplotlib
是 Python 中强大的绘图库,这里将其导入,但在代码中未直接使用mat
进行操作。seaborn
:是基于matplotlib
的统计数据可视化库,提供了更高级的绘图接口,能创建美观的统计图形,sns
是其常用别名。
2. 创建数据集
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mat
import seaborn as sns
data
是一个包含两列(month
和y
)的数据框,可用于后续的绘图操作。这里的数据可能代表了不同月份对应的某个数值(例如销售量)。b_data
是另一个数据框,包含两列(c
和b
)。c
列包含分类变量(A
,B
,C
),b
列包含数值变量,通常用于展示不同分类下的数值分布情况。
3. 设置图形标签
plt.title('goods sell condition')
plt.xlabel('month')
plt.ylabel('number')
plt.title()
:设置图形的标题,这里表示商品销售情况。plt.xlabel()
:设置 x 轴的标签,这里表示月份。plt.ylabel()
:设置 y 轴的标签,这里表示数量
4. 绘制箱线图
sns.boxplot(data=b_data, x='c', y='b')
sns.boxplot()
:使用seaborn
库的boxplot
函数绘制箱线图。data=b_data
:指定要使用的数据框为b_data
。x='c'
:指定 x 轴为分类变量c
。y='b'
:指定 y 轴为数值变量b
。
箱线图是一种用于展示数据分布的统计图形,它可以显示数据的中位数、四分位数、异常值等信息。通过箱线图,我们可以直观地比较不同分类下数值的分布情况,例如数据的集中趋势、离散程度等。
plt.show()
plt.show()
:用于显示绘制好的图形。