zookeeper是一个分布式的协调系统协调系统。zookeeper保证了数据在ZK之间数据的事务性的一致性。其中zookeeper提供了分布式的锁服务,用于协调分布式应用程序。zookeeper的应用主要有储存元数据信息和选举机制。例如在hadoop中可以利用zookeeper选取namenode的active状态,可以在znode下储存对应的信息,来决定哪台nameNode是active状态的。在HBase中,zookeeper负责储存region的信息以及Master的选取。在Storm中负责储存数据的元数据信息。
选举机制中的概念
1.服务器ID
比如说三台服务器,1、2、3------》以为着编号越大,在选举算法中的权重越大
2.数据ID
数据的ID越大说明数据越新,在选举算法中权重越大
3.逻辑时钟
也可以说投票的次数,同一轮投票中逻辑时钟是一样的,每投完一次票这个逻辑时钟就会增加,然后接受到其他服务器中返回的信息相比,根据不同的值做出不同的判断。
4.选举状态
LOOKING:竞选状态
FOLLOWING:随从状态,同步leader状态,参与投票
OBASERVING:观察状态,同步leader状态,不参与投票
LEADING:领导者状态
在投票完成后将服务器ID、数据ID、逻辑时钟、选举状态同步到所有的zookeeper服务器中
选举流程图

选举经典例子
目前有5台服务器,每台服务器均没有数据,它们的编号分别是1,2,3,4,5,按编号依次启动,它们的选择举过程如下:
- 服务器1启动,给自己投票,然后发投票信息,由于其它机器还没有启动所以它收不到反馈信息,服务器1的状态一直属于Looking。
- 服务器2启动,给自己投票,同时与之前启动的服务器1交换结果,由于服务器2的编号大所以服务器2胜出,但此时投票数没有大于半数,所以两个服务器的状态依然是LOOKING。
- 服务器3启动,给自己投票,同时与之前启动的服务器1,2交换信息,由于服务器3的编号最大所以服务器3胜出,此时投票数正好大于半数,所以服务器3成为领导者,服务器1,2成为小弟。
- 服务器4启动,给自己投票,同时与之前启动的服务器1,2,3交换信息,尽管服务器4的编号大,但之前服务器3已经胜出,所以服务器4只能成为小弟。
- 服务器5启动,后面的逻辑同服务器4成为小弟
源码分析
主要看这个类,只有LOOKING状态才会去执行选举算法。每个服