今天主要熟悉的是哈希表的理论基础、242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1. 两数之和。
一、哈希表理论基础
在此贴出几个链接,可以说是比较详细的理论解释了:
二、有效的字母异位词(242)——数组哈希
题目:给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。你可以假设字符串只包含小写字母。
示例 1: 输入: s = "anagram", t = "nagaram" 输出: true
示例 2: 输入: s = "rat", t = "car" 输出: false
分析:初见本题的话,正确且快捷的方法就像是林中的小径难以发现,一旦真发现了又觉得十分容易。题目保证只有小写字母。学过C语言的都知道,小写字母有其对应的ASCII码值,且是连续的。这就给我们以哈希表来解决本题打下了基础。“a”的ASCII码值为97,但我们并不需要知道这么详细,我们以相对“a”的ASCII码值来看问题。
数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。那么需要定义一个多大的数组呢?定义一个数组叫做record,大小为26就可以了,初始化为0,因为字符a到字符z的ASCII也是26个连续的数值。
此时我们有了哈希映射函数:f(“a”)= 0,...,f(“z”)= 25。
再遍历 字符串s的时候,只需要将 s[i] - ‘a’ 所在的元素做+1 操作即可,并不需要记住字符a的ASCII,只要求出一个相对数值就可以了。 这样就将字符串s中字符出现的次数,统计出来了。同样在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。那么最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。
class Solution {
public:
bool isAnagram(string s, string t) {
int record[26] = {0};
for (int i = 0; i < s.size(); i++) {
// 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了
record[s[i] - 'a']++;
}
for (int i = 0; i < t.size(); i++) {
record[t[i] - 'a']--;
}
for (int i = 0; i < 26; i++) {
if (record[i] != 0) {
// record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。
return false;
}
}
// record数组所有元素都为零0,说明字符串s和t是字母异位词
return true;
}
};
三、两个数组的交集(349)——set哈希
题目:给定两个数组,编写一个函数来计算它们的交集。输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。
示例:输入nums1 = [1,2,2,1],nums2 = [2,2]。 输出:[2]
分析:本题主要使用一种哈希数据结构:unordered_set,这个数据结构可以解决很多类似的问题。注意题目特意说明了输出结果中的每个元素一定是唯一的。也就是说输出的结果是去除重复的, 同时可以不考虑输出结果的顺序。这道题目没有限制数值的大小,就无法使用数组来做哈希表了。而且如果哈希值比较少、特别分散、跨度非常大,使用数组就会造成空间浪费。此时要使用另一种结构体set 。C++ 提供常用三种数据结构:std::set;std::multiset;std::unordered_set。std::set和std::multiset底层实现都是红黑树,std::unordered_set的底层实现是哈希表, 使用unordered_set 读写效率是最高的,并不需要对数据进行排序,而且还不要让数据重复,所以选择unordered_set。
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
unordered_set<int> nums_set(nums1.begin(), nums1.end());
for (int num : nums2) {
// 发现nums2的元素 在nums_set里又出现过
if (nums_set.find(num) != nums_set.end()) {
result_set.insert(num);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
四、快乐数
题目:编写一个算法来判断一个数n是不是快乐数。其定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为1,也可能是无限循环但始终变不到1。如果 可以变为1,那么这个数就是快乐数。如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:输入19。 输出:True。
分析:这道题博主第一次见的时候毫无头绪,快乐数本身的计算过程并无规律可寻,着实头疼了博主好一阵子。但题目会给你解答:题目中说了会 无限循环,那么也就是说求和的过程中,sum会重复出现!那么我们只要使用哈希法,来判断这个sum是否重复出现,如果重复了就是return false, 否则一直找到sum为1为止。
class Solution {
public:
// 取数值各个位上的单数之和
int getSum(int n) {
int sum = 0;
while (n) {
sum += (n % 10) * (n % 10);
n /= 10;
}
return sum;
}
bool isHappy(int n) {
unordered_set<int> set;
while(1) {
int sum = getSum(n);
if (sum == 1) {
return true;
}
// 如果这个sum曾经出现过,说明已经陷入了无限循环了,立刻return false
if (set.find(sum) != set.end()) {
return false;
} else {
set.insert(sum);
}
n = sum;
}
}
};
五、两数之和
题目:给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:输入nums = [2, 7, 11, 15], target = 9。 输出: [0, 1]
分析:当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法。本题就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是元素是否出现在这个集合。那么我们就应该想到使用哈希法。因为我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用key-value结构来存放,key来存元素,value来存下标,那么使用map正合适。
这道题目中并不需要key有序,选择std::unordered_map 效率更高。
接下来需要明确两点:map用来做什么?map中key和value分别表示什么?
map是用来存放我们访问过的元素,因为遍历数组的时候,需要记录我们之前遍历过哪些元素和对应的下标,这样才能找到与当前元素相匹配的(也就是相加等于target)
接下来是map中key和value分别表示什么。
这道题我们需要给出一个元素,判断这个元素是否出现过,如果出现过,返回这个元素的下标。那么判断元素是否出现,这个元素就要作为key,所以数组中的元素作为key,有key对应的就是value,value用来存下标。
所以map中的存储结构为 {key:数据元素,value:数组元素对应的下标}。
在遍历数组的时候,只需向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对。如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};