神经网络模拟思路:
1 构建数据集 :通过np.linspace(a,b,c)来构建一个从a到b中取c个数。再用np.reshape(a,(b,c))改变输入数据x的矩阵形状,a表示的是哪个数据被改变,(b,c)是将其改变成这样形状的矩阵
2 创建神经网络模型参数部分 :首先定好参数,再将神经元中的权值和偏重全部定义好
3 进行训练 : 调用生成函数,建立占位符(一般在train函数上生成占位符),调用函数梯度方法修正函数。
mport tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def gen_data():
x = np.linspace(0,2*np.pi,100)
x = np.reshape(x,(len(x),1))
y = np.sin(x)
return x,y
# 创建神经网络模型
def inference(x):
w1 = tf.Variable(tf.truncated_normal(shape=[INPUT_NODE,HIDDEN_NODE],stddev=0.1,dtype=tf.float32),name='w1')
b1 = tf.Variable(tf.constant(0,dtype=tf.float32,shape=[HIDDEN_NODE]))
a1 = tf.nn.sigmoid(tf.matmul(x,w1))
w2 = tf.Variable(tf.truncated_normal(shape=[HIDDEN_NODE, OUTPUT_NODE], stddev=0.1, dtype=tf.float32), name='w2')
b2 = tf.Va