拟合正弦函数

神经网络模拟思路:
1 构建数据集 :通过np.linspace(a,b,c)来构建一个从a到b中取c个数。再用np.reshape(a,(b,c))改变输入数据x的矩阵形状,a表示的是哪个数据被改变,(b,c)是将其改变成这样形状的矩阵

2 创建神经网络模型参数部分 :首先定好参数,再将神经元中的权值和偏重全部定义好

3 进行训练 : 调用生成函数,建立占位符(一般在train函数上生成占位符),调用函数梯度方法修正函数。

mport tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def gen_data():
    x = np.linspace(0,2*np.pi,100)
    x = np.reshape(x,(len(x),1))
    y = np.sin(x)
    return x,y

# 创建神经网络模型
def inference(x):
    w1 = tf.Variable(tf.truncated_normal(shape=[INPUT_NODE,HIDDEN_NODE],stddev=0.1,dtype=tf.float32),name='w1')
    b1 = tf.Variable(tf.constant(0,dtype=tf.float32,shape=[HIDDEN_NODE]))
    a1 = tf.nn.sigmoid(tf.matmul(x,w1))
    w2 = tf.Variable(tf.truncated_normal(shape=[HIDDEN_NODE, OUTPUT_NODE], stddev=0.1, dtype=tf.float32), name='w2')
    b2 = tf.Va
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值