3.Matplotlib数据可视化基础(下)(散点图、折线图、直方图、饼图、箱线图)

本文是作者的学习笔记,聚焦于Matplotlib的可视化基础,涵盖散点图、折线图、直方图和箱线图的绘制。通过实例详细解释如何使用plt.plot()函数创建折线图,并探讨了如何利用直方图展示数据分布,用饼图展示比例关系,以及运用箱线图分析数据的分散状况。内容参考了书籍《Python数据分析与应用》及网络资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接上文
笔记说明:本文是我的学习笔记,大部分内容整理自 黄红梅,张良均等.Python数据分析与应用[M].北京:人民邮电出版社,2018:52-77. 还有部分片断知识来自网络搜索补充。
可视化这块的内容我以后会专门学习一本参考书然后整理笔记的,现在仅仅是整理上述参考书的一个章节的基础知识。

2.2折线图

plt.plot()

参数名称 说明
x,y 接收array,表示x轴和y轴对应的数据
color 接收string,指定线条颜色
linestyle 接收string,指定线条类型,默认是"-"
marker 接收string,表示绘制的点的类型,默认是None
alpha 接收0~1的小数,表示点的透明度

两个栗子!

#1.
plt.figure(figsize=(8,7))
plt.plot(values[:,0],values[:,2],color='r',linestyle='--')
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
plt.xlabel("这个就是年份")
plt.ylabel("生产总值")
plt.ylim((0,225000))
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("各季度国民生产总值折线图")
plt.show()

plt.figure(figsize=(9,7)) 
plt.plot(values[:,0],values[:,2],color='b',linestyle='--',marker='o')
plt.xlabel('这个是年份')
plt.ylim((0,225000))
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title('点线图')
plt.show()

#2.
#将多图画出来,利用plt.plot()一次性画三幅图
plt.figure(figsize=(9,7))
#第三个参数同时设置点的颜色、形状和类型
plt.plot(values[:,0],values[:,3],'rD--',values[:,0],values[:,4],'g8-.',
         values[:,0],values[:,5],'y*-')
plt.xlabel('这个还是年份')
plt.ylabel('这个是产值(亿元)')
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title
当然,以下是使用matplotlib分别生成几种常见表的基本代码示例: 1. **散点图(Scatter Plot)**: ```python import matplotlib.pyplot as plt import numpy as np x = np.random.rand(100) y = np.random.rand(100) plt.scatter(x, y) plt.xlabel('X轴') plt.ylabel('Y轴') plt.title('Scatter Plot') plt.show() ``` 2. **折线图(Line Plot)**: ```python x = np.linspace(0, 10, 100) y = x**2 plt.plot(x, y) plt.xlabel('时间 (s)') plt.ylabel('函数值') plt.title('Linear Plot') plt.show() ``` 3. **直方图(Histogram)**: ```python data = [np.random.randn(1000) for _ in range(5)] plt.hist(data, bins=20, alpha=0.5) plt.xlabel('数值') plt.ylabel('频率') plt.title('Histogram') plt.show() ``` 4. **(Pie Chart)**: ```python labels = 'A', 'B', 'C', 'D', 'E' sizes = [30, 17, 45, 10, 8] plt.pie(sizes, labels=labels, autopct='%1.1f%%') plt.title('Pie Chart') plt.axis('equal') # 确保是圆形的 plt.show() ``` 5. **箱线图(Boxplot)**: ```python data = [np.random.normal(loc=i, scale=0.5, size=100) for i in range(1, 6)] plt.boxplot(data) plt.xticks([1, 2, 3, 4, 5], ['Q1', 'Q2', 'Q3', 'Q4', 'Outliers']) plt.ylabel('Values') plt.title('Boxplot') plt.show() ``` 每个例子都包含了基本的绘元素,如数据准备、坐标轴标签、标题以及显示表。你可以根据需要调整参数和样式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值