梯度提升树的原理推导及源代码实现

本文深入探讨梯度提升树(Gradient Boosting Tree)的原理,从损失函数和残差的概念出发,详细推导算法过程,并提供Python源代码实现,帮助理解并应用该模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度提升树(Gradient Boosting Tree)是一种常用的集成学习算法,它通过迭代地训练多个弱学习器并使其逐步提升整体模型性能。本文将详细介绍梯度提升树的原理推导,并给出相应的源代码实现。

  1. 梯度提升树原理推导
    在开始推导之前,我们首先要了解两个基本概念:损失函数和残差。

1.1 损失函数
损失函数是衡量模型预测结果与真实值之间差异的函数。对于回归问题,常用的损失函数有均方误差(Mean Squared Error,MSE),对数损失(Logarithmic Loss)等;对于分类问题,常用的损失函数有交叉熵损失(Cross Entropy Loss)、指数损失函数(Exponential Loss)等。在梯度提升树中,我们需要选择一个合适的损失函数来优化模型。

1.2 残差
残差是实际观测值与模型预测值之间的差异。对于回归问题,可以将残差定义为:
residual = y_real - y_pred

其中,y_real 表示实际观测值,y_pred 表示模型的预测值。

1.3 梯度提升树算法原理
梯度提升树的核心思想是通过迭代地训练多个弱学习器,并将每个弱学习器的预测结果与真实值之间的残差作为新的目标进行训练。具体的推导过程如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值