【超详细教程】2025年3月最新Pytorch安装教程(同时讲解安装CPU和GPU版本)

一、前言

在深度学习和人工智能领域,PyTorch已成为最受欢迎的开源框架之一。随着技术的不断进步,PyTorch也在持续更新和优化。本文将为您带来2025年最新版本的PyTorch安装教程,并详细解析如何安装支持CPU和GPU的版本。通过本文,您将轻松掌握PyTorch的安装过程,为您在深度学习的探索之旅中提供强大的工具支持。
在这里插入图片描述

二、pytorch简介

Pytorch是基于torch的python版本的机器学习库,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。 Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。作为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了舒适的写代码选择。

在这里插入图片描述

三、安装准备工作

在开始安装PyTorch之前,我们需要进行一些准备工作。首先,确保您的计算机上已安装了合适版本的Python。PyTorch需要Python 3.6或更高版本。同时,您还需要安装pip包管理器,用于安装PyTorch和其他依赖项。所以我们可以通过安装Anaconda来创建一个适合深度学习的Python环境。以下是详细的安装步骤。

3.1、下载Anaconda

首先,访问Anaconda官网(Free Download | Anaconda),选择适合你操作系统的版本,并下载安装包,详细的安装步骤可参考我之前的文章:Anaconda在Windows上的安装与使用
在这里插入图片描述

在这里插入图片描述

四、判断是否有NVIDIA显卡

在安装PyTorch之前,我们需要判断您的计算机是否安装了NVIDIA显卡,因为PyTorch的GPU版本需要NVIDIA显卡来加速计算。您可以通过以下步骤来判断:

① 打开设备管理器:
在Windows上,按下Win键和X键,然后选择“设备管理器”。
在macOS上,打开“系统偏好设置”,选择“硬件”选项卡,然后点击“设备管理器”。

② 查看显示适配器:在设备管理器中,展开“显示适配器”或“图形处理器”部分,查看是否有NVIDIA显卡的列表。如果有NVIDIA显卡,那么您的计算机适合安装PyTorch的GPU版本。

如果没有NVIDIA显卡,您可以只安装PyTorch的CPU版本。如果您有NVIDIA显卡,您还需要进行其他步骤来安装PyTorch的GPU版本。
在这里插入图片描述
(Windows系统——有NVIDIA显卡示例)

五、安装pytorch-CPU版本

在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤。

① 打开终端:在Windows上,打开Anaconda Prompt;在macOS和Linux上,打开终端;
在这里插入图片描述

② 创建虚拟环境:运行以下命令来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“my_env”。

conda create -n <env_name> python=<version>

例如,要创建一个名为myenv的虚拟环境,其中Python版本为3.10,可以运行:

conda create -n my_env python=3.10

③ 激活虚拟环境:运行以下命令来激活刚刚创建的虚拟环境。在Windows上,使用activate命令;在macOS和Linux上,使用source命令。

conda activate <env_name>

例如,要激活名为my_env的虚拟环境,可以运行:

conda activate my_env

# To deactivate an active environment, use
conda deactivate

激活虚拟环境后,您将看到虚拟环境的命令提示符前缀显示为(<env_name>)。这意味着您现在正在使用该虚拟环境的Python解释器。
在这里插入图片描述

④ 安装PyTorch(CPU):在激活的虚拟环境中,使用pip安装PyTorch。根据您的需求,选择安装CPU版本。
在这里插入图片描述

pip3 install torch torchvision torchaudio

官网安装可能很慢(网络不佳和必要的时候可以添加国内源,清华国内源:https://pypi.tuna.tsinghua.edu.cn/simple)

pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

在这里插入图片描述

这样就是安装成功啦~🥰(CPU版本)

六、安装pytorch-GPU版本

6.1、查看CUDA显卡驱动版本

在cmd命令行终端输入nvidia-smi,可以查看到版本为12.5。
在这里插入图片描述

6.2、安装CUDA

① 为什么安装pytorch-GPU前一定要安装CUDA和CuDNN呢?
在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN的原因如下:
1. CUDA是NVIDIA推出的并行计算平台和API模型,它使得显卡可以用于图像渲染和计算以外的
目的,例如通用并行计算。PyTorch通过CUDA可以充分利用GPU的计算能力,加速深度神经网络> 的学习和推理过程。
2. cuDNN是CUDA的扩展库,专门针对深度神经网络中的基础操作提供高度优化的实现方式,
例如卷积、池化、规范化以及激活层的前向和后向过 程。使用cuDNN可以大大提高深度学习模型在GPU上的运行效率。

因此,在安装PyTorch-GPU之前,需要先安装CUDA和cuDNN,以便能够充分利用GPU的计算能力,加速深度神经网络的学习和推理过程。如果不安装CUDA和cuDNN,PyTorch-GPU将无法正常工作。

从官网下载对应的CUDA版本,由于我的显卡版本为12.5,我只需要安装小于或者等于12.5.0都是可以的,我安装的是12.5.0,(目前建议安装11.8,https://download.pytorch.org/whl相对比较完善)。

官网地址:CUDA Toolkit Archive | NVIDIA Developer
在这里插入图片描述

在这里插入图片描述

下载好后,双击安装包进行安装
在安装过程中选择路径的时候,第一次选择的路径下的文件夹会消失。
此处为临时安装目录(默认就可),后期安装完成会自动删除。
在这里插入图片描述

选择“精简”模式,接下来一直点“下一步”就行啦~😉,精简模式会默认安装到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5这个文件夹
在这里插入图片描述
(开始安装,等待后续安装完成)

查看是否安装成功,在命令行输入以下指令进行检查,出现以下类似的输出就证明安装成功。

nvcc  -V

在这里插入图片描述

安装遇到的问题:
安装后不知道cuda安装到哪个文件夹下:【安装完CUDA后文件夹消失解答】

6.3、安装CuDNN(加速器)

通过官网进行安装CuDNN,网址:CUDA Deep Neural Network (cuDNN) | NVIDIA Developer
在这里插入图片描述
下载相对应的压缩包文件
在这里插入图片描述

安装并解压完后,将这几个文件夹复制到CUDA安装路径下,就已经安装完成啦😎
在这里插入图片描述
复制到cuda文件夹C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5下。
CUDA安装默认路径:
Windows:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
Linux:/usr/local/cuda
在这里插入图片描述

6.4、安装pytorch-GPU

在安装PyTorch之前,为了管理不同项目的Python环境,通常建议创建一个虚拟环境。虚拟环境可以帮助您隔离不同项目的依赖项,避免不同项目之间的冲突。以下是创建虚拟环境的步骤。

① 打开终端:在Windows上,打开Anaconda Prompt;在macOS和Linux上,打开终端;
在这里插入图片描述

② 创建虚拟环境:运行以下命令来创建一个新的虚拟环境。您可以将<env_name>替换为您喜欢的环境名称,例如“my_env”。

conda create -n <env_name> python=<version>

例如,要创建一个名为my_env的虚拟环境,其中Python版本为3.10,可以运行:

conda create -n myenv python=3.10

③ 激活虚拟环境:运行以下命令来激活刚刚创建的虚拟环境。在Windows上,使用activate命令;在macOS和Linux上,使用source命令。

conda activate <env_name>

例如,要激活名为my_env的虚拟环境,可以运行:

conda activate my_env

激活虚拟环境后,您将看到虚拟环境的命令提示符前缀显示为(<env_name>)。这意味着您现在正在使用该虚拟环境的Python解释器。

④ 安装PyTorch(GPU):在激活的虚拟环境中,使用pip安装PyTorch。根据您的需求,选择安装GPU版本。例如:(网络不佳和必要的时候可以添加国内源)
官网链接:PyTorch
在这里插入图片描述
命令

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

官网安装可能很慢(网络不佳和必要的时候可以添加国内源)
下面是一些镜像地址
清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
北京外国语大学镜像: https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
阿里巴巴镜像:http://mirrors.aliyun.com/anaconda/pkgs/main

在这里插入图片描述

这样就是安装成功啦~🥰(GPU版本)

6.5 其他方法安装

(1)安装固定版本号

pip install torch==2.6.0+cu118 torchvision==0.21.0+cu118 torchaudio==2.6.0+cu118 -f
https://download.pytorch.org/whl/torch_stable.html

(2)离线安装torch,由于torch比较大,安装缓慢,可下载后离线安装

注意

1)Pytorch与torchvision版本对应问题

Pytorch与torchvision版本配套

在这里插入图片描述

七、pytorch-GPU安装验证

注意:torch.cuda.is_available() 为True则GPU可用,False表示不可用

import torch
 
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())  #输出为True,则安装成功

运行输出
.在这里插入图片描述

这样就是安装成功啦~🥰(GPU版本)

八、总结
🎉 恭喜您!您已经成功完成了PyTorch的安装教程。通过阅读本文,您了解了安装PyTorch的详细步骤,包括准备工作、判断显卡、创建虚拟环境、安装pytorch以及验证安装是否成功。 🚀

参考文章:
从零开始安装pytorch(包含GPU和CPU版本的安装)
【超详细教程】2024最新Pytorch安装教程(同时讲解安装CPU和GPU版本)

程序报错如下,怎么修改 C:\Users\QwQ\PyCharmMiscProject\.venv\Scripts\python.exe D:\funasr_test\main6-8b-5g.py Notice: ffmpeg is not installed. torchaudio is used to load audio If you want to use ffmpeg backend to load audio, please install it by: sudo apt install ffmpeg # ubuntu # brew install ffmpeg # mac funasr version: 1.2.4. Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel You are using the latest version of funasr-1.2.4 Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch 2025-03-06 17:41:06,099 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\speech_fsmn_vad_zh-cn-16k-common-pytorch 2025-03-06 17:41:08,717 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Downloading Model to directory: C:\Users\QwQ\.cache\modelscope\hub\iic\punc_ct-transformer_cn-en-common-vocab471067-large 2025-03-06 17:41:09,440 - modelscope - WARNING - Using branch: master as version is unstable, use with caution Building prefix dict from the default dictionary ... DEBUG:jieba:Building prefix dict from the default dictionary ... Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache DEBUG:jieba:Loading model from cache C:\Users\QwQ\AppData\Local\Temp\jieba.cache Loading model cost 0.350 seconds. DEBUG:jieba:Loading model cost 0.350 seconds. Prefix dict has been built successfully. DEBUG:jieba:Prefix dict has been built successfully. ERROR:root:模型初始化失败: 'device' 按Enter键退出...ERROR:root:处理过程中遇到错误
03-08
<think>好的,我现在需要帮助用户解决他们遇到的程序报错问题。首先,用户提供的错误日志里有几个关键点需要注意。让我仔细看看。 首先,用户运行的是Python脚本main6-8b-5g.py,使用的环境是PyCharm的虚拟环境。程序在加载模型时出现了错误:ERROR:root:模型初始化失败: 'device'。看起来是在初始化模型时缺少了'device'参数,或者参数设置有问题。 接下来,我需要分析可能的原因。在FunASR或者其他基于PyTorch的模型中,通常会有一个device参数来指定使用CPU还是GPU。用户可能在代码中没有正确设置这个参数,导致模型初始化失败。 看用户提供的日志,模型下载部分似乎没有明显的问题,但最后的错误出现在模型初始化阶段。另外,注意到用户使用的是Windows系统,路径显示为C:\Users...,这可能影响设备检测,尤其是在PyTorch中,有时需要显式指定device参数,尤其是在没有GPU的情况下。 可能的解决方案包括: 1. 检查代码中模型初始化时是否有设置device参数。例如,在使用AutoModel的时候,可能需要传递device='cpu'或device='cuda'。 2. 确保PyTorch正确安装,并且如果有GPU的话,安装了对应的CUDA版本。 3. 可能用户的环境中没有正确检测到设备,需要显式指定。 另外,用户可能没有注意到FunASR的文档中关于device参数的说明,或者在更新版本后参数要求有所变化。例如,某些版本可能要求必须显式传递device参数,而旧代码可能没有设置,导致KeyError。 接下来,我应该建议用户检查他们的代码,特别是在初始化模型的部分,比如model = AutoModel(model="...", device="cpu"),确保device参数正确设置。如果用户没有GPU,必须设为'cpu';如果有,可能需要'cuda'。此外,检查PyTorch是否正确识别可用的设备,可以通过打印torch.cuda.is_available()来确认。 另外,用户的环境中有没有可能存在的版本冲突?例如,FunASR的版本是1.2.4,可能需要特定版本PyTorch或者其他依赖库。建议用户确认依赖版本是否符合要求。 还有,错误日志中提到了jieba分词成功加载,这可能不是问题所在。主要问题集中在模型初始化失败,所以重点应放在device参数PyTorch环境配置上。 总结可能的解决步骤: 1. 修改模型初始化代码,添加device参数。 2. 确认PyTorch安装正确,尤其是GPU的支持。 3. 查看FunASR的文档或更新日志,确认是否有相关变更。 4. 尝试使用更明确的设备指定,比如强制使用CPU。 此外,用户可能是在Windows环境下遇到路径问题,但根据错误信息,更可能是参数缺失。所以优先处理device参数的问题。</think>根据错误信息`模型初始化失败: 'device'`,这个问题通常是由于模型初始化时缺少设备参数导致的。以下是分步解决方案: **步骤1:检查模型初始化代码** 在你的代码中应该存在类似这样的模型初始化语句: ```python from modelscope import AutoModel model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch") ``` **步骤2:显式添加device参数** 在模型初始化时强制指定设备(Windows系统建议显式设置CPU): ```python model = AutoModel( model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", device="cpu" # 添加设备参数 ) ``` **步骤3:验证PyTorch设备支持** 在代码开头添加设备检测代码: ```python import torch print(f"PyTorch可用设备:{torch.cuda.is_available()}") ``` **步骤4:完整代码示例** ```python from modelscope import AutoModel, AutoTokenizer import torch # 设备检测 device = "cuda" if torch.cuda.is_available() else "cpu" print(f"当前使用设备:{device}") # 显式设置设备初始化所有模型 asr_model = AutoModel( model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", device=device ) vad_model = AutoModel( model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", device=device ) punc_model = AutoModel( model="iic/punc_ct-transformer_cn-en-common-vocab471067-large", device=device ) ``` **补充说明:** 1. 如果使用NVIDIA显卡: - 确认已安装CUDA工具包(11.7或11.8版本) - 安装对应版本PyTorch: ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 2. Windows系统常见问题: - 建议使用WSL2进行开发 - 确保虚拟环境路径没有中文或特殊字符 3. 其他注意事项: ```python # 在代码开头添加(解决Windows路径问题) import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" ``` 如果问题仍未解决,建议更新FunASR到最新版本: ```bash pip install -U funasr ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值