Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble 阅读笔记

1.Introducton

本文是2021年会议NAACL上的一篇文章。在这篇文章中,作者提出了一种具有多层结构的类型感知图卷积神经网络模型(T-GCN)。

2.Model

2.1 Type-aware Graph Construction

这一部分主要介绍如何构建类型感知图。我们知道,在以往的文章中,学者们更多的是关注词与词的依赖关系,从而忽略了词与词之间的关系类型。如果只是关注依赖关系,那么就无法判断词与词之间关联的重要性,从而会误导模型的“判断”。本文中作者通过三个步骤向我们介绍了关系类型图的构建。

首先:通过一些现有的工具包,从而获得依赖结果\left(x_{i}, x_{j}, r_{i, j}\right)

其次:作者使用了\mathbf{A}=\left\{a_{i, j}\right\}_{n \times n} 作为领接矩阵来存放x_{i}x_{j}的依赖关系,如果x_{i}x_{j}之间有依赖关系那么a_{i, j}的值为1,否则为0。用\mathbf{R}=\left\{r_{i, j}\right\}_{n \times n}来存放x_{i}x_{j}的依赖关系类型,每一种依赖关系都对应了不同的值。

最后:为了利用关系类型,作者利用了一个转变矩阵将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值