1.Introducton
本文是2021年会议NAACL上的一篇文章。在这篇文章中,作者提出了一种具有多层结构的类型感知图卷积神经网络模型(T-GCN)。
2.Model
2.1 Type-aware Graph Construction
这一部分主要介绍如何构建类型感知图。我们知道,在以往的文章中,学者们更多的是关注词与词的依赖关系,从而忽略了词与词之间的关系类型。如果只是关注依赖关系,那么就无法判断词与词之间关联的重要性,从而会误导模型的“判断”。本文中作者通过三个步骤向我们介绍了关系类型图的构建。
首先:通过一些现有的工具包,从而获得依赖结果。
其次:作者使用了 作为领接矩阵来存放
和
的依赖关系,如果
和
之间有依赖关系那么
的值为1,否则为0。用
来存放
和
的依赖关系类型,每一种依赖关系都对应了不同的值。
最后:为了利用关系类型,作者利用了一个转变矩阵将