最大连续子序列,Java实现

本文介绍了一种使用动态规划在Java中找到给定整数序列最大连续子序列和的方法。通过状态定义、状态转移方程以及初始状态的设定,实现了空间复杂度优化到O(1)级别的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法真的是太神奇了!!!

初步实现:

思路

◼ 给定一个长度为 n 的整数序列,求它的最大连续子序列和
比如 –2、1、–3、4、–1、2、1、–5、4 的最大连续子序列和是 4 + (–1) + 2 + 1 = 6
◼ 状态定义
假设 dp(i) 是以 nums[i] 结尾的最大连续子序列和(nums是整个序列)
✓ 以 nums[0] –2 结尾的最大连续子序列是 –2,所以 dp(0) = –2
✓ 以 nums[1] 1 结尾的最大连续子序列是 1,所以 dp(1) = 1
✓ 以 nums[2] –3 结尾的最大连续子序列是 1、–3,所以 dp(2) = dp(1) + (–3) = –2
✓ 以 nums[3] 4 结尾的最大连续子序列是 4,所以 dp(3) = 4
✓ 以 nums[4] –1 结尾的最大连续子序列是 4、–1,所以 dp(4) = dp(3) + (–1) = 3
✓ 以 nums[5] 2 结尾的最大连续子序列是 4、–1、2,所以 dp(5) = dp(4) + 2 = 5
✓ 以 nums[6] 1 结尾的最大连续子序列是 4、–1、2、1,所以 dp(6) = dp(5) + 1 = 6
✓ 以 nums[7] –5 结尾的最大连续子序列是 4、–1、2、1、–5,所以 dp(7) = dp(6) + (–5) = 1
✓ 以 nums[8] 4 结尾的最大连续子序列是 4、–1、2、1、–5、4,所以 dp(8) = dp(7) + 4 = 5

◼ 状态转移方程
如果 dp(i – 1) ≤ 0,那么 dp(i) = nums[i]
如果 dp(i – 1) > 0,那么 dp(i) = dp(i – 1) + nums[i]
◼ 初始状态
dp(0) 的值是 nums[0]
◼ 最终的解
最大连续子序列和是所有 dp(i) 中的最大值 max

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值