计算机视觉 | 面试题:02、代码实现卷积操作

本文源于一次面试失败的教训,详细解释了如何将卷积操作转化为矩阵乘法,以提高运算效率,并提供了两种Python实现:滑动窗口版本和矩阵乘法版本。通过将卷积核与输入图像转换为矩阵,利用numpy实现卷积运算,有助于理解并掌握卷积运算的实质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

写代码实现卷积操作

问题背景

一次面试失败得来的深刻教训,自己的学习太不扎实了,理论基础薄弱,一来真格就不会。其实这个问题之前在看面经的时候就有说到过,虽然理论弄明白了,但还是心存侥幸没有动手把代码写出来……

问题解答

传统卷积运算是将卷积核以滑动窗口的方式在输入图上滑动,当前窗口内对应元素相乘然后求和得到结果,一个窗口一个结果。相乘然后求和恰好也是向量内积的计算方式,所以可以将每个窗口内的元素拉成向量,通过向量内积进行运算,多个窗口的向量放在一起就成了矩阵,每个卷积核也拉成向量,多个卷积核的向量排在一起也成了矩阵,于是,卷积运算转化成了矩阵乘法运算。下图很好地演示了矩阵乘法的运算过程:

im2col

将卷积运算转化为矩阵乘法,从乘法和加法的运算次数上看,两者没什么差别,但是转化成矩阵后,运算时需要的数据被存在连续的内存上,这样访问速度大大提升(cache),同时,矩阵乘法有很多库提供了高效的实现方法,像BLAS、MKL等,转化成矩阵运算后可以通过这些库进行加速。

缺点呢?这是一种空间换时间的方法,消耗了更多的内存——转化的过程中数据被冗余存储。

还有两张形象化的图片帮助理解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值