如何在 R 中计算 AUC(曲线下面积)

本文介绍了如何在R中使用逻辑回归评估模型,特别是通过计算AUC(曲线下面积)来衡量模型对二元响应变量的预测能力。通过敏感性和特异性绘制ROC曲线,AUC越接近1表示模型性能越好。文中提供了加载数据、拟合模型以及使用pROC包计算AUC的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归是一种统计方法,当响应变量为二元时,我们使用它来拟合回归模型。为了评估逻辑回归模型对数据集的拟合程度,我们可以查看以下两个指标:

敏感性: 当结果确实为正时,模型预测观察结果为正的概率。这也称为“真阳性率”。
特异性: 当结果确实为负时,模型预测观察结果为负的概率。这也称为“真阴性率”。
可视化这两个指标的一种方法是创建ROC 曲线,它代表“接收器操作特性”曲线。

该图显示了沿 y 轴的灵敏度和沿 x 轴的(1 - 特异性)。量化逻辑回归模型在数据分类方面的效果的一种方法是计算AUC,它代表“曲线下面积”。

AUC 越接近 1,模型越好。

以下分步示例显示了如何计算 R 中逻辑回归模型的 AUC。

第 1 步:加载数据
首先,我们将从ISLR包中加载默认数据集,其中包含有关各种个人是否拖欠贷款的信息。

#load dataset
data <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值