逻辑回归是一种统计方法,当响应变量为二元时,我们使用它来拟合回归模型。为了评估逻辑回归模型对数据集的拟合程度,我们可以查看以下两个指标:
敏感性: 当结果确实为正时,模型预测观察结果为正的概率。这也称为“真阳性率”。
特异性: 当结果确实为负时,模型预测观察结果为负的概率。这也称为“真阴性率”。
可视化这两个指标的一种方法是创建ROC 曲线,它代表“接收器操作特性”曲线。
该图显示了沿 y 轴的灵敏度和沿 x 轴的(1 - 特异性)。量化逻辑回归模型在数据分类方面的效果的一种方法是计算AUC,它代表“曲线下面积”。
AUC 越接近 1,模型越好。
以下分步示例显示了如何计算 R 中逻辑回归模型的 AUC。
第 1 步:加载数据
首先,我们将从ISLR包中加载默认数据集,其中包含有关各种个人是否拖欠贷款的信息。
#load dataset
data <