R 语言降维的 PCA 与自动编码器

本文探讨了R语言中PCA和自动编码器两种降维方法。PCA通过选择顶部主成分减少数据变化,而自动编码器通过神经网络结构在压缩和重构数据时捕获更多结构信息。在较小数据集上,自动编码器在重建数据方面可能优于PCA,尤其在低维度表示时。然而,PCA提供了一个明确的选择组件指南,而自动编码器需要更多计算资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主成分分析
PCA 通过将数据正交变换为一组主成分来减少数据帧。第一个主成分解释了单个成分中数据的最大变化量,第二个主成分解释了第二大的变化量,依此类推。通过选择顶部ķ解释 80-90% 变化的主成分,其他成分可以被删除,因为它们对模型没有显着的好处。此过程保留了主成分中的一些潜在信息,有助于构建更好的模型。

PCA 程序将应用于该数据集上的连续变量。

suppressPackageStartupMessages(library(DAAG))
head(ais)
# standardise<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值