一、方差分析(45分) 冬小麦不同水分条件下的产量试验进行了不同水分处理,为完全随机设计,试进行方差分析(wh.csv)。 (1)是否满足方差分析的前提假设?(提示:正态检验用shapiro.test

这篇博客介绍了使用R语言进行冬小麦不同水分条件下方差分析,结果显示产量数据不符合正态分布但方差齐性成立。方差分析表明水分处理对产量有显著影响。此外,通过多重比较分析了水分处理组间的差异,并探讨了环境气象因素如气温、水汽压差等对NEE、RECO和GPP的影响,进行了多元线性回归和通径分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023年《试验设计与统计》上机实践考试
结题报告最终文档要求(需包括代码、结果和说明文字,括号内蓝色字体提示均为采用R语言的主要代码,仅供参考):
一、方差分析(45分)
冬小麦不同水分条件下的产量试验进行了不同水分处理,为完全随机设计,试进行方差分析(wh.csv)。
(1)是否满足方差分析的前提假设?(提示:正态检验用shapiro.test,方差齐性检验用car程序包中的leveneTest函数)(10分)
在这里插入图片描述

正态性检验显示,产量数据不符合正态分布(Shapiro-Wilk检验,p = 0.0001029),这可能对后续方差分析结果产生影响。

在这里插入图片描述

方差齐性检验的结果显示,不同水分处理组间的方差齐性并不显著(Levene’s Test, p = 0.2948),即在统计学上可以认为方差齐性成立。

(2)画出箱式图(ggplot2)。(10分)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值