如何高效阅读人工智能研究论文

导读: 在刚迈入科研时,人人都说读论文很重要,但是很少有人能完整地教你应该如何读论文。论文不仅揭示了行业的最新进展和趋势,而且为我们提供了改进技术和解决复杂问题的思路。然而,由于学术论文常常包含密集的技术细节和专业术语,新手可能会觉得门槛较高。

本教程内容:

0. 方法

我将把阅读人工智能研究论文的过程分为两部分:广泛阅读和深度阅读。没有固定的先后顺序,这里有一个建议的顺序:

  1. 针对完全没有接触过深度学习或机器学习的小白,建议先挑一个简单的任务进行深度阅读(代码加论文)

  2. 针对有一定基础的同学来说,开始调研新的领域时,建议从广泛阅读着手,然后再精挑一两篇进行深度阅读。

广泛阅读意味着浏览文献,并阅读各个论文的小部分内容。广泛阅读的目标是构建和改进我们对研究主题的整体认知。一旦在广泛阅读中确定了你想要深入理解的关键技术点,就可以开始进行深入阅读:我一般是指完全理解代码细节以及论文每一个公式。广泛阅读和深入阅读都是必需的,且可能互相迭代,尤其是在你刚开始的时候。

我将以我自己研究的方向-语义分割(semantic segmentation)为例,作为我们想要探讨的假设主题,非常具体地向你介绍如何进行广泛阅读和深度阅读。

1. 深度阅读

让我们从简单的搜索引擎(谷歌/必应/百度)或者大模型搜索“语义分割 (semantic segmentation)”开始。建议一开始可以从中文看起,毕竟比较好理解,基本概念都掌握之后,要多用英文搜索,现在有翻译,也比较方便。

我们可以先了解有关语义分割的定义。在脑海里建立了一个初步的印象,就是对图像像素进行分类。但是在代码层面如何实现你肯定还是一头雾水,接下来就是需要具体跑代码。接下来介绍两个寻找代码非常有用的链接:

1.1Papers With Code

Papers with Code 是一个社区项目,其使命是创建包含机器学习论文、代码、数据集、方法和评估表的免费开放资源。我自己以及身边人都经常使用它。

我们需要开始做笔记,所以让我们打开一个文档(可以用自己经常用的,我推荐用在线的一些文档管理比如飞书,或者记录在本地,也可以用typora软件)。

让我们看到下面带有代码的论文的 Benchmarks (基准测试)部分。下面列举了在不同数据集下,最先进的模型,以及论文和代码。

点击ADE20K,会跳转到下面这个链接,说明在2023年出现了一种最先进的方法(你可能听说过 SOTA)。方法称之为ViT-Adapter-L。排行榜非常有用:它向我们展示了包括和类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值