采用kNN算法回答红色字体提出的问题。要求写出算法过程和预测结果。
KNN原理
KNN(K-最近邻)算法是一个简单直观的分类方法。它的核心思想是“物以类聚”,即一个样本的类别通常由其周围最近的几个邻居决定。这里的“最近”是通过计算样本间的距离来确定的。
原理简述:
1. 距离测量:确定一个距离度量,以评估样本之间的相似性。常用的距离度量包括欧氏距离和曼哈顿距离。
2. 邻居选择:选择一个正整数K,表示最近邻居的数量。对于每个需要分类的样本点,算法会找出训练集中与它最近的K个样本点。
3. 多数投票:这K个样本点的多数类别将被赋予给测试样本。如果K=1,那么测试样本的类别就是那一个最近邻居的类别。
解这道题需要涉及的知识点:
1. 数据预处理:将所有的特征转换为数值型数据,因为KNN算法在计算距离时需要数值型数据。
2. 标签编码:将类别型特征(如“晴朗”、“多云”、“下雨”等)转换为数值,这样可以在算法中使用。
3. 选择K值:选择合适的K值对算法的性能影响很大。K值太小会使得噪声数据的影响增大,而K值太大又会使分类器过于简化。
4. 距离计算:理解并能够计算样本点之间的距离,通常使用欧氏距离公式。
欧氏距离是最常用来衡量两个点在多维空间中的真实距离的一种方法。
假设我们有两个点,P 和 Q,在一个n维空间中,它们的坐标分别为
和