Pytorch的梯度控制

在之前的实验中遇到一些问题,因为之前计算资源有限,我就想着微调其中一部分参数做,于是我误打误撞使用了with torch.no_grad,可是发现梯度传递不了,于是写下此文来记录梯度控制的两个方法与区别。

在PyTorch中,控制梯度计算对于模型训练和微调至关重要。这里区分两个常用方法:

1. tensor.requires_grad = False

  • 目标: 单个张量(通常是模型参数 nn.Parameter)。
  • 行为:
    • “参数冻结”:这个张量本身不会计算梯度 (.gradNone)。
    • “参数不更新”:优化器不会更新这个张量。
    • “梯度可穿透”:如果它参与的运算的输入是 requires_grad=True 的,梯度仍然会通过这个运算传递给输入。它不阻碍梯度流向更早的可训练层。
  • 场景:
    • 微调:冻结预训练模型的某些层,只训练其他层。
    • 例子:pretrained_layer.weight.requires_grad = False

2. with torch.no_grad():

  • 目标: 一个代码块 (with 语句块内部)。
  • 行为:
    • “全局梯度关闭”(块内):块内所有新创建的张量默认 requires_grad=False
    • “不记录计算图”:块内的运算不被追踪,不构建反向传播所需的计算图。
    • “梯度截断”:梯度流到这个块的边界就会停止,无法通过块内的操作继续反向传播
  • 场景:
    • 模型评估/推理 (Inference/Evaluation):不需要梯度,节省内存和计算。
    • 执行不需要梯度的任何计算。
    • 例子:
     with torch.no_grad():
         outputs = model(inputs)
         # ...其他评估代码
    

核心区别速记:

特性requires_grad=Falsewith torch.no_grad():
谁不更新?这个参数自己(块内)没人更新
梯度能过吗?能过!不能过! (被截断)
影响范围?单个张量整个代码块

一句话总结:

  • 想让某个参数不更新但梯度能流过,用 requires_grad=False
  • 想让一段代码完全不计算梯度也不让梯度流过,用 with torch.no_grad()

搞清楚这两者的区别,能在PyTorch中更灵活地控制模型的训练过程!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值