现金贷FK简介

本文详细探讨了现金贷风控体系,重点关注反欺诈和多头借贷的识别,涉及贷前审核、风控流程、技术手段如反欺诈规则和大数据分析,以及如何平衡用户体验与反欺诈。文章还讨论了未来发展方向,如非结构化数据的应用和差异化定价策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反欺诈、识别多头借贷是重点

1. 现金贷风控体系:

1.1 现金贷产品四要素

利率、期限、额度、目标人群。

      对于每一类目标人群,在流动性需求、未来可预期现金流、消费观念、收入水平以及信用状况等维度上都具有一定的规律和共性,进而影响其申请额度、贷款利息的接受水平、还款能力和还款意愿等。

        不好的推广渠道会引入了大量非目标人群,降低推广成本的使用效率和后期风控流程的判断精度,还会产生大量有偏数据,不利于风控模型的迭代升级和产品的再设计。

 1.2 风控流程三阶段

1. 贷前阶段:

        贷前阶段是整个风控流程的核心阶段,会根据 第三方的征信数据、黑名单、反欺诈规则、风控模型则等一层层对用户进行过滤;

1. 申请:申请人提供贷款额度、贷款期限以及各类个人信息(姓名、身份证号、银行卡信息、学籍、社保与公积金信息等);

2. 审核:与黑名单数据、征信数据匹配,放入反欺诈模型过滤;

3. 授信:根据个人欺诈及信用风险评估结果确定授信额度,并放款。

2. 贷中阶段:

4. 跟踪:主要是对借款人个人信息的跟踪和监控。如是否有新的借款记录或逾期信息产生,设备信息是否稳定,位置信息是否规律。

一旦有异常信息的产生,风控人员可以及时地发现、联系该借款人,尽可能保证这笔借款的安全;

3. 贷后阶段:

5. 催收:包括还款前的提醒,还款日点催,逾期后的催收等;

6. 续贷:逾期后申请贷款展期或还贷以后再度申请贷款。

        如果借款人申请展期或者续贷,则需要在这一阶段结合历史数据,使用行为评分卡等重新进行审核,并作相应的额度调整和风险分池管理。

        在整个风控流程中,需要对借款的集中度作妥善管理,防止因为集中借款和集中逾期带来的资金流动性不足的问题。

 1.3 风控体系两个重点

1. 反欺诈:

        现金贷风控是一种轻度风控,由于其小额短期的特点,现金贷风控更重视的是借款人的还款意愿而非还款能力。适度的逾期不仅不会影响平台的正常运营,反而可以通过逾期费用提高其营收。因此,反欺诈是现金贷风控的首要课题。目前线上贷款的欺诈行为有中介代办、团伙作案、机器行为、账户盗用、身份冒用和串联交易等。针对这些欺诈行为,常用的反欺诈规则包括勾稽比对、交叉检验、强特征筛选、风险关系以及用户行为数据分析。

1. 黑名单:可在最大程度上避免重复欺诈行为,但其覆盖群体较小,且需要时间积累;

2. 人工电核:电话联系,对于绝大多数欺诈行为都有效,但人力成本高昂;

3. 人脸识别:与身份证等证件照对比,实现申请人身份的远程验证;

4. 业务逻辑限制:申请人必须先成为投资用户才有借款资格,可大大提高欺诈成本,但仅适用于有投资理财业务的平台,且会过滤掉部分有实际借款需求的人;

5. 勾稽比对:检验个人信息多个维度之间的逻辑关系是否合理,降低了以伪造、冒用身份欺诈的成功概率,但会受到信息复杂度的限制,部分信息较难量化;

6. 交叉检验:检验个人信息与外部数据是否匹配,但信息匹配较难,还需要查找外部数据;

7. 强特征筛选:通过欺诈强相关变量过滤(如:催收机构的通话记录),可避免多变量之间的匹配,提高了审核效率,但需要频繁进行历史数据回溯和阈值调整,有监督;

8. 关系网络:将所有申请人按照年龄跨度、性别比例等维度分群,检测异常群体,对于识别团伙欺诈有明显作用,但目标维度选择较难,需要降维;

9. 行为数据判断:识别异常申请行为,对机器行为欺诈有明显效果,但规则比较复杂,且判断结果比较粗糙。

2. 多头借贷识别

        多头借贷是指同一借款人在多个贷款机构有过贷款行为。其行为的识别包括两个方面:

1. 获取多头借贷数据:由于现金贷的目标人群大多都是不被传统借贷机构覆盖的长尾人群,缺少完整的央行征信数据,因此,一些从事现金贷业务的平台会相互合作,实现贷款申请数据的共享。另外,现金贷平台在第三方征信机构针对每一笔贷款申请记录作查询时,势必会留下大量贷款申请人的身份信息。这部分信息经过查询异常检测算法的过滤以后就会形成一个可靠的多头借贷数据库。

2. 恶性多头借贷行为的识别:恶性多头借贷行为指贷款人借新还旧或者在同一时期有大笔多头借贷。对于借新还旧行为的识别可以结合贷款申请间隔和贷款期限。如果贷款申请间隔明显小于贷款期限,说明该笔贷款申请有较大的借新还旧风险。

2. 矛盾与变化

2.1 欺诈手段的多元化、技术化、互联网化

 1. 针对手机验证的例子: 诈骗团伙有一种技术装备(猫池)。一台具有收发短信功能的“n卡n待”的简易手机。一台电脑可以连接多台猫池,一台猫池又可以插入8-64张SIM卡。与之伴随的,又有所谓的“收卡”、“养卡”业务。当号码时间达到一定标准了,就有可能通过手机验证这一反欺诈手段。

2. 篡改设备:一些模拟器的使用可以帮助诈骗分子轻松修改手机的IMEI、MAC、IP、GPS等设备及环境信息。而且有些个人信息,如身份证信息、社交账号、银行卡账号甚至U盾等都可以在网上被诈骗团伙买到或者用搜索引擎搜到。

2.2 风控模型的冷启动

        对于一些初创型的现金贷平台,在其积累数据的前期阶段,势必需要付出巨大的成本,去收集数据、搭建模型、数据回测。另外平台不得不投入高额的资金成本去购买第三方数据。目前大多采用人工审核和一些简单的反欺诈规则。

2.3 用户体验与反欺诈的矛盾

        现金贷用户眼中,用户体验反映在借款的快捷程度和申请的简易程度上,但反欺诈需要用户提供各种各样的个人信息,大大降低了用户体验的质量。一方面,平台需要优化反欺诈模型,尽可能降低入口数据的维度,缩短风控模型的审核时间;另一方面,从客服、还款简便程度等其他角度优化用户体验,也是缓解用户体验与反欺诈矛盾的可行方法之一。

3. 发展方向

1. 非结构化数据的使用

        结构化数据(如个人征信数据等)的稀疏性问题会在未来很长时间内存在于现金贷行业。相比于结构化数据,人们的行为数据等更难被模拟,能更全面地刻画贷款申请人,对于降低反欺诈模型的错误率有明显作用。但非结构化数据相互间逻辑很难统一,数据异常、冗余、缺失的问题严重,处理难度较大。

2. 差异化定价

       实质是对各个贷款申请人的信用及欺诈风险作精确定价。大数据风控模型的构建为差异化定价的实现提供了技术保证。以大量的网络行为数据、用户交易数据、第三方数据、合作方数据等为基础,通过自然语言处理、机器学习、聚类算法等,模型能够为每一位贷款申请者创建包括个人基本信息、行为特征、心理特征、经济状况、兴趣爱好等在内的多维度数据画像。凭借着这些维度特征和大量历史贷款记录,针对不同贷款人、不同额度、不同期限的差异化定价策略将成为现实。

4. 现金贷的风控策略

1. 定位准确、风险可控

        在产品设计上,必须明确产品的额度(一般都是500-300)、期限(1、7、14、30、60天,很少超过两个月的)、目标客户特征(白领、学生、蓝领、急需短期拆借的用户)等要素,有效控制风险。最核心思路在于,借款金额、账期、客户三个维度的多元化来分散潜在或预期出现的风险。

2. 反欺诈和大数据风控也很关键

        客户准入前就应考虑引入反欺诈风控体系,同时建立起大数据风控模式,对申请客户进行黑名单、反欺诈过滤、增加客户风险评分。目前市场上规模比较大的几家现金贷公司,也会接入银联、前海征信、鹏元征信等国内比较大的第三方征信数据,用以完善平台自身反欺诈、风控模型对用户风险的识别。

3. 需要快速迭代的建立客户风险定价能力

        定价能力是通过大数据风控模型的建立,一方面是通过对客户画像并进行分类从而降低坏账率,另一方面是为了对不同风险的客户进行准确的风险定价。

4. 贷后催收和资产处置

        催收和资产处置决定了坏账率和盈利率。现金贷一般采用,在还款前1-3天内就开始进行提醒。账单日开始进行点催,超过5天之后就应该考虑是否采用属地催收,如果超过7天就应考虑是否采用委外催收甚至启动处置的情况。

5. 需要进行战略规划

       现金贷刚刚火起来,风口什么时候结束没人可以预测,现在所能做只有站在风口和在风力减弱的时候退出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值