【Java SpringAI智能体开发学习 | 4-1】RAG知识库进阶,ETL详解:文档收集和切割

#AI的出现,是否能替代IT从业者?#

ETL

ETL(Extract抽取,Transform转换,Load加载),宏观上看就是对知识库的文档进行处理,然后存储到向量数据库的过程

文档Document

从源码可以看到,Document不只是有文档的内容,还可以包含一系列元信息和多媒体附件,可以使文档更方便地被搜索和排序。

在SpringAI中,对Document处理有三个步骤:

1. 抽取文档

2. 转换文档

3. 写入文档

SpringAI分别通过DocumentReader->DocumentTransformer->DocumentWriter三大组件实现ETL

接下来将要对其具体实现进行介绍。

抽取Extract

public interface DocumentReader extends Supplier<List<Document>> {
    default List<Document> read() {
        return get();
    }
}

实现了 Supplier<List<Document>>接口,将各种数据源文件中的数据转换为Document

SpringAI提供了多种DocumentReader实现类来读取不同类型源文件的数据

转换Transform

public interface DocumentTransformer extends Function<List<Document>, List<Document>> {
    default List<Document> transform(List<Document> documents) {
        return apply(documents);
    }
}

DocumentTransformer负责将一组Document转换为另一组Ducument

SpringAI提供了多种实现类

1. TextSplitter

是文本切割器的基类

        TokenTextSplitter是其实现,基于token的文本切割器。考虑了语义边界来切割文档。

2. MetadataEnricher元数据增强器

为文档补充更多的元数据

  • KeywordMetadataEnricher:使用AI提取关键词附加到元数据中
  • SummaryMetadataEnricher:使用AI生成摘要添加到元数据,可以关联前后相邻的文档

3. ContentFormatter内容格式化工具

加载Load

通过DocumentWriter实现文档写入

1. FileDocumentWriter:将文档写入文件系统

2. VectorStoreWriter:将文档写入向量数据库

<think>好的,我现在需要处理用户关于DeepSeek知识库构建方法、模型训练过程智能体打造的查询。首先,用户希望整理成文档,所以回答需要结构清晰,分步骤说明。 根据用户提供的引用内容,引用3提到了基于DeepSeek+RAG构建企业知识库文档预处理数据整理,这部分可以作为知识库构建的基础。需要详细说明文件预处理、数据清洗、分块向量化存储的步骤,可能还要提到格式转换的要求,比如优先使用TXT、Markdown等格式,以及如何处理PDFWord文档。 模型训练方面,用户可能想了解预训练、微调RAG结合的细节。引用2提到云端DeepSeek模型的应用,可以引用这些信息说明如何利用预训练模型进行微调。需要分步骤讲解数据准备、模型选择、训练配置评估优化。 关于智能体打造,可能需要结合RAG技术,引用3中的知识库构建是关键。要说明如何集成知识库智能体系统中,设计交互逻辑,持续优化反馈机制。此外,引用1中的Dify安装DeepSeek配置教程可能涉及部署接口开发,这部分可以作为工具使用的参考。 接下来要确保回答符合系统级指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$,生成相关问题。需要检查是否有需要数学表达的地方,比如模型训练中的损失函数可能需要公式,例如交叉熵损失:$$L = -\sum y_i \log(p_i)$$,但用户的问题可能不涉及太多数学,所以可能不需要,但需留意。 然后整理学习资料,引用2提供了大模型学习路线图、商业化方案等,可以作为推荐的学习资源。最后生成相关问题,例如知识库构建的挑战、模型微调技巧、智能体的应用场景等。 需要确保所有引用标记正确,比如文档预处理部分引用[^3],模型训练引用[^2],智能体部分引用[^1]。保持回答结构清晰,分点说明,帮助用户逐步理解整个过程。</think># DeepSeek知识库构建与智能体开发指南 ## 一、知识库构建方法 ### 1. 文档预处理(核心基础) - **格式转换**:优先处理结构化文档(TXT/Markdown/HTML),非结构化文档如PDF/Word需转换为标准格式 - **数据清洗**:使用正则表达式过滤噪声数据,保留有效知识片段,如: ```python import re clean_text = re.sub(r'[^\w\s]', '', raw_text) # 去除特殊字符 ``` - **知识分块**:采用滑动窗口算法分割长文本,典型分块大小512-1024字符 ### 2. 向量化存储 构建知识图谱时需处理实体关系: $$ R(e_i,e_j) = \frac{count(e_i,e_j)}{\sqrt{count(e_i) \cdot count(e_j)}} $$ 其中$e_i,e_j$为实体节点,$R$表示关联强度 ## 二、模型训练过程 ### 1. 预训练阶段 - 使用万亿token级语料库 - 采用混合精度训练(FP16/FP32) - 典型超参数设置: ```yaml learning_rate: 3e-5 batch_size: 128 max_seq_length: 2048 ``` ### 2. 微调阶段 - 使用企业特定数据增强领域适应性 - 损失函数选择: $$ \mathcal{L} = \alpha \mathcal{L}_{MLM} + \beta \mathcal{L}_{NSP} $$ (掩码语言建模+下一句预测) ## 三、智能体打造 ### 1. 核心架构 ```mermaid graph LR A[用户输入] --> B(RAG检索) B --> C[知识库向量匹配] C --> D[DeepSeek模型生成] D --> E[响应输出] ``` ### 2. 关键技术 - 多轮对话状态跟踪 - 知识置信度评估: $$ confidence = \frac{\|q \cdot d\|}{\|q\| \|d\|} $$ (q:问题向量,d:文档向量) ## 学习资料整理 | 资源类型 | 推荐内容 | 来源 | |---------|----------|------| | 视频教程 | 《大模型微调实战》100集 | | | 实践方案 | 智能客服系统建设方案 | | | 技术文档 | RAG检索优化白皮书 | |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值