Granular Ball Computing (GBC)

本文介绍了粒球计算(GBC)在模糊粗糙集框架下如何应用于异常检测和特征选择。通过粒球模糊集减少输入样本,提升训练效率,同时粒球的大小可根据具体情况进行调整,以增强对噪声数据的鲁棒性。在特征选择中,使用基于粒球的模糊粗糙集,以应对标签分布学习中的不确定性。粒球的生成采用k-means聚类算法,通过粒球的纯度来决定是否继续划分。此外,粒球的中心点作为其隶属度参与训练,简化了计算。在无标签数据的异常检测中,粒球计算借鉴了模糊粗糙集的思路,但直接处理数值数据,避免离散化带来的信息丢失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Granular-Ball Fuzzy Set and Its Implementation in SVM 2023

Granular-ball definition center and radius:

Traditional fuzzy data processing structure with points as input can be converted to a new structure incorporating granular-ball fuzzy set

Original fuzzy dataset D = {(x1, σ1\sigma1σ1), (x2, σ2\sigma2σ2),…,(xn, σn\sigma{n}σn)}

Granular-ball fuzzy dataset G = {(GB1, σGB1\sigma{GB_1}σGB1), (GB2, σGB2\sigma{GB_2}σGB2),…,(GBl, σGBl\sigma{GB_l}σGBl)}

lll and σGBl\sigma{GB_{l}}σGBl represent the number and membership degree of fuzzy granular-ball

Each granular-ball can be represented by its center cic_ici

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@u@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值