线性代数学习笔记之线性方程组

1.  线性方程组的表示法


(1)代数表示法:

         已知线性方程组如下所示:

         \left\{\begin{matrix} a_{11}x_{1}+ a_{12}x_{2} +... + a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+ a_{22}x_{2} +... + a_{2n}x_{n}=b_{2} \\ ............ \\ a_{m1}x_{1}+ a_{m2}x_{2} +... + a_{mn}x_{n}=b_{m} \end{matrix}\right.

         其中:m为方程的个数,n为未知量的个数

         1)当常数项b_{1}b_{2},...b_{m}不全为零时,该线性方程组称为非齐次线性方程组。

         2)当常数项b_{1}b_{2},...b_{m}全为零时,该线性方程组称为齐次线性方程组。

(2)矩阵表示法:

         对上述线性方程组进行矩阵化处理,记作如下:

         A=\begin{pmatrix} a_{11} &a_{12} &...&a_{1n} \\ a_{21} &a_{22} &...&a_{2n} \\ ...& ... &...& ...\\ a_{m1} &a_{m2} &...&a_{mn} \end{pmatrix}      x=\begin{pmatrix} x_{1} \\ x_{2} \\ ... \\ x_{n} \end{pmatrix}      b=\begin{pmatrix} b_{1}\\ b_{2}\\ ...\\ b_{m} \end{pmatrix}

         其中:A称为系数矩阵;x称为未知量的列向量;b称为常数项的列向量。

         根据矩阵的乘法,上述线性方程组可表示为:

         \begin{pmatrix} a_{11} &a_{12} &...&a_{1n} \\ a_{21} &a_{22} &...&a_{2n} \\ ...& ... &...& ...\\ a_{m1} &a_{m2} &...&a_{mn} \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \\ ... \\ x_{n} \end{pmatrix}=\begin{pmatrix} b_{1}\\ b_{2}\\ ...\\ b_{m} \end{pmatrix}

         即:Ax=b

         1)当常数项列向量不是零向量时,该线性方程组称为非齐次线性方程组。

                                                     即:Ax=b

         2)当常数项列向量是零向量时,该线性方程组称为齐次线性方程组。

                                                     即:Ax=0

(3)向量表示法:

         将系数矩阵A按列分块,即A= (\alpha _{1},\alpha _{2},...\alpha _{n}),根据向量的运算,则有:

                                    \alpha _{1}x_{1}+\alpha _{2}x_{2}+...+\alpha _{n}x_{n}=b

         其中\alpha _{1}\alpha _{2},...\alpha _{n}为系数矩阵A的列向量组,\alpha _{i}b表示如下:

         \alpha _{1}=\begin{pmatrix} a_{11}\\ a_{21}\\ ...\\ a_{m1} \end{pmatrix}          \alpha _{2}=\begin{pmatrix} a_{12}\\ a_{22}\\ ...\\ a_{m2} \end{pmatrix}          ...\alpha _{n}=\begin{pmatrix} a_{1n}\\ a_{2n}\\ ...\\ a_{mn} \end{pmatrix}          b=\begin{pmatrix} b_{1}\\ b_{2}\\ ...\\ b_{m} \end{pmatrix}

         1)当常数项列向量不是零向量时,该线性方程组称为非齐次线性方程组。

                                即:\alpha _{1}x_{1}+\alpha _{2}x_{2}+...+\alpha _{n}x_{n}=b

         2)当常数项列向量是零向量时,该线性方程组称为齐次线性方程组。

                                即:\alpha _{1}x_{1}+\alpha _{2}x_{2}+...+\alpha _{n}x_{n}=0

备注:

①:\bar{A}称为增广矩阵,如下所示:

        \bar{A}=(A,b)=\begin{pmatrix} a_{11} &a_{12} &...&a_{1n}& \vdots &b_{1} \\ a_{21} &a_{22} &...&a_{2n} &\vdots &b_{2}\\ ...& ... &...& ....&\vdots &...\\ a_{m1} &a_{m2} &...&a_{mn}&\vdots &b_{m} \end{pmatrix}

②:若Ax=b \rightarrow Ax=0,则称齐次线性方程组为非齐次线性方程组的导出组。 


2.  线性方程组的解的判定


(1)线性方程组的初等变换:

     遵循原则:1)交换两个方程的位置;

                       2)方程两端同时乘以数k(k ≠ 0);

                       3)某方程两端的l倍加到另一个方程上。

备注:线性方程组的初等变换就是解线性方程组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值