pytorch入门

本文介绍了如何使用PyTorch的torch.randn()函数生成标准正态分布的随机矩阵,并展示了torch.rand()生成0到1均匀分布的用法。通过实例演示了创建张量的形状操作和转化为Python列表以便交互。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用torch.randn构建正态分布的随机数

import torch 
a=torch.randn(2,3)#使用标准正态分布,随机生成

>>>a
>tensor([1,2,3],
>			[2,3,4])
>>>a.size(0)
>2
>>>a.size(1)
>3
>>>a.shape
>torch.Size([2,3])
>>>a.shape[1]
>3

构建torch.rand()【0,1】均匀分布

a=torch.rand(1,2,3)
>>>a

在这里插入图片描述

>>>a[0]

在这里插入图片描述
为了和python进行交互,可用list保存

list(a.shape)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值