- 博客(10)
- 收藏
- 关注
原创 多智能体深度强化学习算法-MADDPG-PettingZoo环境-02MPE环境
多粒子环境Multi Particle Environments (MPE) 是一组面向通信的环境,其中粒子代理可以(有时)移动,通信,看到彼此,推动彼此,并与固定的地标交互。
2025-02-18 14:46:40
946
原创 多智能体深度强化学习算法-MADDPG-PettingZoo环境-01学习资料
PettingZoo 是一个简单的 pythonic接口,能够表示一般的多智能体强化学习MARL问题。- PettingZoo 包括各种参考环境、有用的实用程序和工具,用于创建您自己的自定义环境。所有agent共享critic网络---- PettingZoo 可以使用与。CTDE框架 MADDPG---支持基于顺序轮次的环境,而。类似的界面与环境进行交互。支持具有同步作的环境。确定性决策的MDP---
2025-02-18 13:38:46
375
原创 多智能体强化学习-Gymnasium-05 MountainCarEnv环境代码
它包括一辆随机放置在正弦谷底部的汽车,唯一可能的动作是可以在任何方向上应用于汽车的加速度。gymnasium的山地车域car domain有两种形式:一种是离散动作,一种是连续动作。这个MDP的目标是策略性地给汽车加速,以实现目标:使汽车到达正确的山顶。这个版本是具有离散动作的版本。mountain car这个环境是一个确定性的。
2024-12-13 21:53:05
1086
原创 jupyternotebook操作
1.使用快捷方式打开jupyter,在没有设置工作路径的情况下,会直接打开默认路径。2.选择这个,敲入路径,回车。
2024-11-19 17:08:04
205
原创 多智能体强化学习-Gymnasium-03Agent训练
本页提供了一个关于如何训练Gym环境中的智能体的简短概述,特别是,我们将使用基于表格的Q-learning来解决Blackjack v1环境。有关本教程的完整版本以及其他环境和算法的更多培训教程,请参阅此。在阅读此页之前,请先阅读基本用法。在我们实现任何代码之前,这里有一个Blackjack(21点游戏)和Q-learning的概述。21点是最受欢迎的赌场纸牌游戏之一,在某些条件下也因可击败而臭名昭着。
2024-10-29 22:14:10
1704
原创 多智能体强化学习-Gymnasium-02基础概念
Wrappers(包装器)是一种修改现有环境而无需直接修改底层代码的方便方法。使用Wrappers(包装器)将允许您避免大量样板代码,并使您的环境更加模块化。Wrappers(包装器)也可以被链接以组合它们的效果。大多数通过生成的环境将默认使用TimeLimit和进行包装。
2024-10-28 17:01:45
1920
原创 多智能体强化学习-Gymnasium-01介绍及安装
Gymnasium 是 OpenAI 的 Gym 库的维护分支。Gymnasium 接口简单、pythonic,能够表示一般的 RL 问题,并且具有适用于旧 Gym 环境的兼容性包装器。
2024-10-27 16:30:14
854
原创 多智能体强化学习-各种python库
Gymnasium 接口简单、pythonic,能够表示一般的 RL 问题,此外再:pip install "momaland[learning]"兼容大部分数值计算的库,比如 TensorFlow 和 Theano。OpenAI Gym是一个用于开发和对比 RL 算法的工具箱,也是一个类似PettingZoo的一个Python库,并且具有适用于旧 Gym 环境的兼容性包装器。PettingZoo是一个Python库,已经在实验室电脑中配置好名为MOMA的环境。官网直接全选库库装,反正装完了就能pip了。
2024-10-25 22:02:10
631
原创 MySQL笔记-MySQLWorkbench新建表单
MySQL Workbench基本用法超详细教程_Mysql_脚本之家本文详细讲解了MySQL Workbench基本用法,本文通过图文实例相结合给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧MySQL Workbench相当于SQL语言的解释器。
2024-09-13 14:45:54
415
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人