Graph Contextualized Self-Attention Network for Session-based Recommendation
本篇论文主要是在讲图上下文自注意力网络做基于session的推荐,在不使用循环神经网络和卷积神经网络的情况下,自注意网络在各种序列建模任务中取得了显著的成功,然而SAN缺乏存在于相邻项目上的局部依赖性,并限制了其学习序列中上下文表示的能力。本文提出使用图上下文自注意网络模型,使用图神经网络和自注意力机制做推荐,每个session使用自注意力机制学习长期依赖性。最后,每个会话被表示为该会话的全局偏好和当前兴趣的线性组合。
首先是session图的构建,session图的节点表示session中item,session中的边表示item中的关系,构成一个有向图,如下图所示
我们用M(I)和M(O)表示输入和输出边的权重连接矩阵,举个栗子,假设一个Session S = {s1, s3, s2, s4, s3},M(I)和M(O)的矩阵如下图所示:
在构建完session图之后,经过图神经网络得到session中每个item的潜在的表示,然后再经过自注意力层得到session