Graph Contextualized Self-Attention Network for Session-based Recommendation

Graph Contextualized Self-Attention Network for Session-based Recommendation

本篇论文主要是在讲图上下文自注意力网络做基于session的推荐,在不使用循环神经网络和卷积神经网络的情况下,自注意网络在各种序列建模任务中取得了显著的成功,然而SAN缺乏存在于相邻项目上的局部依赖性,并限制了其学习序列中上下文表示的能力。本文提出使用图上下文自注意网络模型,使用图神经网络和自注意力机制做推荐,每个session使用自注意力机制学习长期依赖性。最后,每个会话被表示为该会话的全局偏好和当前兴趣的线性组合。
首先是session图的构建,session图的节点表示session中item,session中的边表示item中的关系,构成一个有向图,如下图所示
由session转换为session图
我们用M(I)和M(O)表示输入和输出边的权重连接矩阵,举个栗子,假设一个Session S = {s1, s3, s2, s4, s3},M(I)和M(O)的矩阵如下图所示:
输入边和输出边的权重连接矩阵
在构建完session图之后,经过图神经网络得到session中每个item的潜在的表示,然后再经过自注意力层得到session

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值