超详细注释版:归并排序原理、改进思路及其实现方法(C++实现)

归并排序(Merge Sort)

在排序算法的历史上,归并排序是第一个可以在最坏情况依然保持 O ( n l o g n ) O(nlogn) O(nlogn)的运行时间的确定性排序算法,由冯诺依曼与1945年在EDVAC上首次编程实现。

归并排序的思路简单,速度仅次于快速排序,为稳定排序算法。一般用于对总体无序,但是各子项相对有序的数列。在模式上有:分(Divide)、治(Conquer)、合(Combine)三个步骤,主要有迭代法和递归法两种实现方法。适用于数组基本有序、外排序等情况。

本文主要以递归法对归并排序流程进行讨论、实现和分析改进。

策略:分而治之(divide and conquer)


二路归并算法原理

在这里插入图片描述

  • 以上递推和回归的二叉树高度均为为 log ⁡ 2 8 = 3 {\log_28} = 3 log28=3

MergeSort框架设计

按照以上流程可以先将列出解题框架,显然用递归是可以实现的。列框架可大致分为3步:

  1. 分:将一个数组分为若干个子数组
  2. 治:将分解好的子数组两两排序(这里可以将看做:大数组=左数组+右数组),排序算法要考虑一般情况。(sort)
  3. 合:将排好序的代码合并。(merge)

按照上述思路先列出框架,由于在合并时需要排好序,所以治、合步骤需要在一个函数中实现,即:

void mergeSort(int* arr, int lo, int hi) { … } //分
void merge(int* arr, int lo, int mid, int hi) { … } //治、合。此函数参数mid非必要

细节设计

①分:以数组中间为分界线,分为左数组和右数组。即左数组和右数组分别调用mergeSort(),重复该过程一直到达递归基。
代码块

void mergeSort(int* arr, int lo, int hi) {
     //0 <= lo < hi <= size 
	//递归基
    if (hi - lo < 2) return;

	int mid = (lo + hi) / 2;   //以中点为界限  
	mergeSort(arr, lo, mid);   //左侧子数组数组
	mergeSort(arr, mid, hi);   //右侧子数组

	//2.治、合,进入到这一步时已达到递归深入点,可以看做已经分好组,下面要做的是按照组排序并连接成有序数组
	//注意连接时需要考虑非平凡情况(理解递归的运作方式)
	merge(arr, lo, mid, hi);   //归并为有序数组
}

②治、③合:
(封装在merge函数中)
这里的实现方法有很多个版本,仅选用个人认为可读性最好的一种解释。

考察最一般的情况:在mergeSort()递推完毕,回归未结束程序时,此时左右数组在程序中是分区间标记的。此时在原区间上是无法排序的,就需要开辟一块新的内存空间,此时需要左右数组的指针和新开辟空间的指针,方便维护。
所需创建的变量和向量前后的哨兵如图:
在这里插入图片描述

对应代码块:

	int* temp = new int[hi - lo];   //汇总两个子向量的临时区域
	int left_idx = lo;
	int right_idx = mid;            //分别对应左侧和右侧的数组当前位置索引
	int temp_idx = 0;               //临时归并数组的区域索引,最初位置

由于自递归深入点(最内层),每一步都会执行一次merge操作,故在使用merge合并数组后就会使得相对外部的一层left和right成为有序序列,下一步要做的就是实现此操作。
设有序向量:{1,3,7,9} 和 {2,4,6,8},观察下图合并过程:
在这里插入图片描述每次移动赋值一个元素,temp_idx都会对应向后移动一个单元,直到right和left未经比较的元素耗尽(可作为循环终止条件)。而针对left和right指针同理,每次在绿色框(针对当前的arr[left_idx]和arr[right_idx]两个元素)内比较后,拿出较小的一个数即可,对应的left_idx或right_idx++.

注:若排序方向从小到大,则将代码块中的if条件改为arr[left_idx] < arr[right_idx] 即可,一步到位。因为这里隐含条件是:其中left和right之一耗尽后,剩余的元素都是较小的。

对应代码块:

//情况③(一般情况,蕴含了数组长度left = right的情况):
	while (left_idx < mid && right_idx < hi) {
   
		if (arr[left_idx] < arr[right_idx])
			temp[temp_idx++] = arr[left_idx++];  //小的放前面,记得每次执行成功要让对应的指针后移一位
		else
			temp[temp_idx++] = arr[right_idx++];
	}

如果细心一些就会发现,如果left或right之一元素已经耗尽,存在 left_idx < mid 和 right_idx < lo 两种情况,那么这些数就是比较大的数,直接复制到temp即可。

代码块:

//情况①:左侧数组比较元素已耗尽,直接复制
	while (left_idx < mid) {
   
		temp[temp_idx++] = arr[left_idx++];
	}
//情况②:右侧数组比较情况已耗尽,直接复制
	while (right_idx < hi) {
   
		temp[temp_idx++] = arr[right_idx++];
	}

注意:一般情况和数组元素耗尽的情况处理是需要有顺序的,应先处理一般情况,再处理left和right耗尽的情况,否则left和right会直接分别复制到temp中去,使得排序失败。
left和right耗尽的两种情况出现顺序无要求。


ok,经过一顿操作后temp就是有序的了,最后temp中的数据复制到arr中的对应位置 [lo,hi) 之间,将临时数组temp释放就完成了。

③合:

	for (int i = 0; i < temp_idx; i++) {
   
		arr[lo + i] = temp[i];
	}

整合代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloud Stream

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值