机器学习面试必知:MLE最大似然估计与MAP最大后验概率

MLE
模型已定,参数未知,MLE的目标就是找出一组参数,使得模型产生出的观测数据的概率最大 a r g   m a x u   p ( X ; u ) arg\ \underset{u}{max}\ p(X;u) arg umax p(X;u)
假设抛十次硬币TTTHTTTHTT(H正,T反)假设正面朝上的概率是 u u u
p ( x ; u ) = ∏ i p ( x i ; u ) = ∏ i = 1 n u x i ( 1 − u ) x i p(x;u)=\prod_{i}p(x_{i};u)=\prod_{i=1}^{n}u^{x_{i}}(1-u)^{x_{i}} p(x;u)=ip(xi;u)=i=1nuxi(1u)xi

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值