抽蓝球红球,蓝结束红放回继续,平均结束游戏抽取次

本文深入探讨了概率论在Python编程中的应用,通过具体的数学公式解析和代码实现,展示了如何计算期望值,并验证了理论与实践的一致性。特别关注了在无限次试验下,特定事件发生的平均次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设蓝x个,红y个,那么p1=xx+y,p2=yx+yp_{1}=\frac{x}{x+y},p_{2}=\frac{y}{x+y}p1=x+yx,p2=x+yy
次数为1∗p1+2∗p2∗p1+...+n∗p2n−1p11*p_{1}+2*p_{2}*p_{1}+...+n*p_{2}^{n-1}p_{1}1p1+2p2p1+...+np2n1p1n趋向于无穷大
E=p1[1+2∗p2+...n∗p2n−1]E=p_{1}[1+2*p2+...n*p_{2}^{n-1}]E=p1[1+2p2+...np2n1]
假设[1+2∗p2+...n∗p2n−1]=S[1+2*p2+...n*p_{2}^{n-1}]=S[1+2p2+...np2n1]=S
那么S−p2S=1+p2+p22+...+p2n−1−n∗p2n=1−p2n1−p2−n∗p2nS-p_{2}S=1+p_{2}+p_{2}^{2}+...+p_{2}^{n-1}-n*p_{2}^{n}=\frac{1-p_{2}^{n}}{1-p_{2}}-n*p_{2}^{n}Sp2S=1+p2+p22+...+p2n1np2n=1p21p2nnp2n
E=(1−p2)S=1−p2n1−p2−n∗p2nE=(1-p_{2})S=\frac{1-p_{2}^{n}}{1-p_{2}}-n*p_{2}^{n}E=(1p2)S=1p21p2nnp2n
当n趋向于无穷大时次数等于1−01−p2=1p1\frac{1-0}{1-p_{2}}=\frac{1}{p_{1}}1p210=p11
下面用python代码进行验证

p1=0.4
p2=1-p1
E=0
cnt=10000
for i in range(1,cnt+1):
    E+=i*p1*p2**(i-1)
print(E)

E=2.5000000000000004 结果相符

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值