基于面绘制的 Marching Cubes 算法和基于体绘制的 Ray-casting 实现的 Dicom 图像的 3D 重建

63 篇文章 ¥59.90 ¥99.00
本文介绍了基于面绘制的Marching Cubes算法和基于体绘制的Ray-casting方法在 DICOM 图像三维重建中的应用,提供了相关源代码示例。Marching Cubes通过等值面提取生成表面三角形网格,Ray-casting则通过射线采样和插值生成体数据表面。两种方法各有适用场景,可根据需求选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dicom(Digital Imaging and Communications in Medicine)是一种常用的医学影像数据格式,用于存储和传输医学图像。在医学图像处理中,常常需要将二维的医学图像重建为三维的模型,以便进行进一步的分析和可视化。本文将介绍如何使用基于面绘制的 Marching Cubes 算法和基于体绘制的 Ray-casting 方法来实现 Dicom 图像的三维重建,并提供相应的源代码。

  1. Marching Cubes 算法
    Marching Cubes 算法是一种常用的三维重建算法,它基于体数据的等值面提取。该算法将体数据划分为一系列的小立方体单元,并根据每个单元内部数据的阈值进行插值,生成表面三角形网格。以下是基于 Marching Cubes 算法的 Dicom 三维重建的源代码示例:
import numpy as np
from skimage import measure

def dicom_to_3d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值