量表的内容效度表现在两个方面:
- 相关性:指量表内的元素能否恰当地反映被评估目标的结构与功能;
- 代表性:指量表内元素能在多大程度上反应被评估目标的结构与功能。
现在常用Davis LL. 所提倡的的量表相关性分析方法来评估量表的内容效度(content validity index, CVI),具体流程如下:
-
准备内容效度评估表
对每一项的相关性进行评估:①不相关;②有点相关;③很相关;④高度相关
注意要在评估表附上填表说明,向评审专家进行讲解。
-
挑选专家
最后可接受的CVI与专家数目有关。
按以往经验,一般找6-10个专家比较好。
-
组织专家评审
可以面对面(步骤3、4、5同时进行),也可以线上进行。 -
专家对项目进行评审
-
专家逐个项目打分
-
计算CVI
CVI分为项目CVI(item-level content validity index, I-CVI)和量表CVI(scale-level content validity index,S-CVI)。
*将评价为③很相关与④高度相关记为1,评价为①不相关与②有点相关记为0。如果所有专家都评了③或④,则此项目满分。
S-CVI分两种算法:
(1) I-CVI的平均值为S-CVI/Ave;
(2) 满分的项目占比为S-CVI/UA。
举个例子,一个量表有12项,请了10个专家评审,第2项有9个专家评为③或④(9个1),有一个专家评了②(1个0),那这个项目的I-CVI是9/10 = 0.9.
把所有项目的I-CVI相加,除以12就是S-CVI/Ave。
所有项目中,假如有2个项目没有拿到满分。那S-CVI/UA = 10/12 = 0.83
参考文献:ABC of Content Validation and Content Validity Index Calculation. Muhamad Saiful Bahri Yusof. https://doi.org/10.21315/eimj2019.11.2.6 →原文链接