以detectron2了解maskrcnn实现源码(0)--开篇

本文作者计划逐步解析Detectron2中Mask R-CNN的实现过程,以此来深入了解目标检测的细节。作者认为了解实现原理对于学习至关重要,但网上的资源往往缺乏系统性和源码解析。Detectron2作为Facebook AI Research的优秀框架,具有完善的文档和易用性,适合边学边练。作者将遵循从原理到源码的学习路径,旨在提供一个系统的目标检测学习笔记,批评了一些资料的冗长和不清晰,并赞扬了Datawhale团队简洁明了的教程风格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打算开始写一个系列--记录下研究detectron2实现maskrcnn的过程。

cv目标检测这块,maskrcnn比较有代表性,非常适合用来了解目标检测的各项实现细节。
至于为什么要了解实现细节,因为一定程度的了解实现原理,很多时候很有必要。

而想要了解目标检测,网上资料虽多,可成体系的几乎木有。且往往不涉及源码细节,或者对某些细节的解释又过于复杂。
我们想了解目标检测的话,最好的路径自然是:先了解原理骨架,然后走一遍源码,间或去敲掉一个个技术难点,最后再整个贯通起来。
我这个系列就是按照这个流程来走得一个个人学习笔记。

写这个的初衷主要是为了做笔记,其次是对网上很多资料看不惯。比如:下一篇我想写的双线线插值,网上搜下,就这么一个简单的东西,某乎好些文章恨不得写个3,4页。

这方面datawhale的教程做得比较好。 整体风格–简洁明了。
我很认同《动手学cv》中说的,大意:“其实目标检测,网上并没有很好的教程”。所以,他们自己写了个基于anchor的one-stage的tiny目标检测。源码很清晰,看完基本就了解目标检测实现原理了。

detectron2作为FAIR开源的牛X框架,文档完善,上手简单。正好拿来边玩边学。
至此打住,下片开始正文。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值