【深度学习_4.3】构建YOLO物体识别算法

本文详细介绍了YOLO(You Only Look Once)物体识别算法的原理和实现过程,包括模型结构、输出编码、过滤策略以及非极大抑制(NMS)在消除重叠方框中的应用。通过设置阈值和NMS,对识别结果进行精简,提高准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练集里面的训练图片被标记如下


如果YOLO算法需要识别80种物体,那么c可以是1-80之间的任意整数,也可以是80维的向量,识别出的物体为1,其他均为零。

YOLO算法模型

输入(m,608,608,3)

输出是识别出来的物体被边框(pc,bx,by,bw,bh,c),加入c是一个80维的向量,则每个边框有80个代表值

示例中将使用5个achors box,因此模型为IMAGE(吗,608,608,3)->deep CNN->ENCODING(m,19,19,5,85)

ENCODING细节解释


解释:如果识别出的物体落入了一个网格中,那么这个网格将会负责识别该物体

本示例中使用的是5个achors box,因此19*19中的每个网格ENCODING5个boxes,为了方便起见,把(m,19,19,5,85)展开为(m,19,19,425)


于是,对每个achors box做如下计算


对于19*19个网格中的每个格子,找到每个网格的最大score

给每个最大score的achors box上色

另外一种可视化YOLO输出结果的方式是:把识别物体绑定的方框画出来

通过一次前向传播识别19*19*85个achors box,并用不同样色标记识别出来物体上的方框


但是这种方式输出的结果仍然太多,需要用non-max-suppression方法来过滤掉一部分输出结果:

1.减少输出识别物体的方框数量

2.对于一个识别物体多个方框覆盖的情况,会仅仅保留一个方框

用最大阈值过滤class

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值