LLM推理入门指南①:文本生成的初始化与解码阶段

b5fb2dac296612ec74b139ed3b0325d2.jpeg

随着生成式AI的火热发展,高企的语言大模型(LLM)推理性能和成本成为阻碍其大规模应用的关键挑战。

LLM推理是指使用仅解码器Transformer模型生成词元,而大多数挑战及其相关的解决方法都来自这种特定的架构和用例。本系列文章将深入探讨LLM推理的不同层面及其挑战,同时,其中提供的有价值见解也适用于Transformer编码器模型的推理。

通过本系列内容的学习,希望帮助读者了解与LLM推理密切相关的术语,比如键-值(KV)缓存、内存带宽限制(memory-bandwidth bound)等,以便理解推理优化(量化、融合kernel、模型架构修改等)和配置(批处理大小、使用哪种GPU等)所涉及的各种技术,并最终将它们与关键的性能指标(时延、吞吐量和成本)联系起来。

希望读者建立起一个见解深刻的心智模型,从而能够在配置和优化LLM serving解决方案时做出明智且迅速的决策。本文是该系列的第1篇文章,主要关注文本生成的两个阶段:初始化阶段和生成(或解码)阶段。

在阅读本系列文章之前,读者需对Transformer架构以及在著名的《Attention Is All You Need》论文中介绍的缩放点积注意力(SDPA)机制有基本了解,但无需深入了解注意力机制背后的动机因素。

本文作者为AWS的GenAI解决方案架构师Pierre Lienhart。以下内容由OneFlow编译发布,转载请联系授权。原文:https://medium.com/@plienhar/llm-inference-series-2-the-two-phase-process-behind-llms-responses-1ff1ff021cd5)

作者 | Pierre Lienhart

OneFlow编译

翻译|宛子琳、杨婷

本文回顾了Transformer架构以及使用基于Transformer的解码器进行文本生成的基础知识。更重要的是,我将构建起整个LLM推理系列中要使用的词汇表,并使用粗体标记出个人认为重要的术语。读者将主要了解文本生成的两个阶段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值