参考:《数据结构(C++语言版)》邓俊辉著 (好书
一、
伸展树(由 D. D. Sleator 和 R. E. Tarjan 于 1985 年发明)也是平衡二叉搜索树的一种形式。相对于 AVL 树,伸展树的实现更为简洁
伸展树无需时刻都严格地保持全树的平衡,但却能够在任何足够长的真实操作序列中,保持分摊意义上的高效率
伸展树也不需要对基本的二叉树节点结构做任何附加的要求或改动,更不需要记录平衡因子或高度之类的额外信息,故适用范围更广
二、局部性
信息处理的典型模式是,将所有的数据项视作一个集合,并将其组织为某种适宜的数据结构,进而借助操作接口高效访问
为考查和评价各操作接口的效率,除了从最坏情况的角度出发,也可假定所有操作彼此独立、次序随机且概率相等,并从平均情况的角度出发
然而,后一尺度所依赖的假定条件, 往往并不足以反映真实的情况
实际上, 通常在任意数据结构的生命期内, 不仅执行不同操作的概率往往极不均衡,而且各操作之间具有极强的相关性, 并在整体上多呈现出极强的规律性
其中最为典型的,就是所谓的“数据局部性”( data locality) ,这包括两个方面的含义:
- 刚刚被访问过的元素, 极有可能在不久之后再次被访问到
- 将被访问的下一元素, 极有可能就处于不久之前被访问过的某个元素的附近
充分利用好此类特性,即可进一步地提高数据结构和算法的效率
就二叉搜索树而言,数据局部性具体表现为:
- 刚刚被访问过的节点, 极有可能在不久之后再次被访问到
- 将被访问的下一节点, 极有可能就处于不久之前被访问过的某个节点的附近
因此, 只需将刚被访问的节点,及时地“转移”至树根( 附近) , 即可加速后续的操作
当然,转移前后的搜索树必须相互等价
三、逐层伸展
1、简易伸展树
一种直接方式是:每访问一个节点之后,随即反复地以它的父节点为轴,经适当的旋转将其提升一层,直至最终成为树根
以图 1 为例,若深度为 3 的节点 E 刚被访问 -- 无论查找或插入,甚至“删除” -- 都可通过 3 次旋转,将该树等价变换为以 E 为根的另一棵二叉搜索树
图 1 通过自下而上的一系列等价变换,可使任一节点上升至树根
随着节点 E 的逐层上升,两侧子树的结构也不断地调整,故这一过程也称作伸展(splaying)
而采用这一调整策略的二叉搜索树也因此得名
不过,为实现真正意义上的伸展树,还须对以上策略做点微秒而本质的改进
之所以改进,是因为目前的策略仍存在致命的缺陷 -- 对于很多访问序列,单次访问的分摊时间复杂度在极端情况下可能高达 Ω(n)
2、最坏情况
不难验证,若从空树开始依次插入关键码 {1,2,3,4,5},且其间采用如上调整策略,则可得到如图 2 所示的二叉搜索树
接下来,若通过 search() 接口,再由小到大地依次访问各节点一次,则该树在各次访问之后的结构形态将如图(b ~ f)所示
图 2 简易伸展树的最坏情况
可见,在各次访问之后, 为将对应节点伸展调整至树根,分别需做 4、 4、 3、 2 和 1 次旋转
一般地,若节点总数为 n,则旋转操作的总次数应为:
(n - 1) + { (n - 1) + (n - 2) + ... + 1 } = (n^2 + n - 2) / 2 = Ω(n^2)
如此分摊下来,每次访问平均需要 Ω(n) 时间
很遗憾,这一效率不仅远远低于 AVL 树, 而且甚至与原始的二叉搜索树的最坏情况相当
而事实上,问题还远不止于此
稍做比对即不难发现, 图 2(a) 与 (f) 中二叉搜索树的结构完全相同
也就是说,经过以上连续的 5 次访问之后, 全树的结构将会复原!这就意味着,以上情况可以持续地再现
当然, 这一实例, 完全可以推广至规模任意的二叉搜索树
于是对于规模为任意 n 的伸展树,只要按关键码单调的次序, 周期性地反复进行查找
则无论总的访问次数 m >> n 有多大, 就分摊意义而言, 每次访问都将需要 Ω(n) 时间!
那么,这类最坏的访问序列能否回避?具体地,又应该如何回避?
四、双层伸展
为克服上述伸展调整策略的缺陷,一种简便且有效的方法就是:将逐层伸展改为双层伸展
具体地,每次都从当前节点v向上追溯两层(而不是仅一层) , 并根据其父亲p以及祖父g的相对位置, 进行相应的旋转
以下分三类情况, 分别介绍具体的处理方法
1、zig-zig / zag-zag
如图 3(a) 所示,设 v 是 p 的左孩子,且 p 也是 g 的左孩子
设 W 和 X 分别是 v 的左、右子树, Y 和 Z 分别是 p 和 g 的右子树
图 3 通过 zig-zig 操作,将节点v上推两层
针对这种情况,首先以节点 g 为轴做顺时针旋转 zig(g), 其效果如图 (b) 所示
然后,再以 p 为轴做顺时针旋转 zig(p), 其效果如图 (c) 所示
如此连续的两次 zig 旋转, 合称 zig-zig 调整
自然地, 另一完全对称的情形 -- v 是 p 的右孩子,且 p 也是 g 的右孩子 -- 则可通过连续的两次逆时针旋转实现调整, 合称 zag-zag 操作
2、zig-zag / zag-zig
如图 4(a) 所示,设 v 是 p 的左孩子,而 p 是 g 的右孩子
设 W 是 g 的左子树, X 和 Y 分别是 v 的左、右子树, Z 是 p 的右子树
图 4 通过 zig-zag 操作,将节点 v 上推两层
针对这种情况,首先以节点 p 为轴做顺时针旋转 zig(p), 其效果如 (b) 所示
然后,再以 g 为轴做逆时针旋转 zag(g), 其效果如图 (c) 所示
如此 zig 旋转再加 zag 旋转, 合称 zig-zag 调整
同样地, 另一完全对称的情形 -- v 是 p 的右孩子,而 p 是 g 的左孩子 -- 则可通过 zag 旋转再加 zig 旋转实现调整, 合称 zag-zig 操作
3、zig / zag
如图 5(a) 所示,若 v 最初的深度为奇数,则经过若干次双层调整至最后一次调整时, v 的父亲 p 即是树根 r
将 v 的左、右子树记作 X 和 Y,节点 p = r 的另一子树记作 Z
图 5 通过 zig 操作,将节点 v 上推一层,成为树根
此时,只需围绕 p = r 做顺时针旋转 zig(p),即可如图 (b) 所示, 使 v 最终攀升至树根,从而结束整个伸展调整的过程
zag 调整与之对称
4、效果与效率
综合以上各种情况,每经过一次双层调整操作,节点 v 都会上升两层
若v的初始深度 depth(v) 为偶数,则最终 v 将上升至树根
若 depth(v) 为奇数,则当 v 上升至深度为 1 时,不妨最后再相应地做一次 zig 或 zag 单旋操作
无论如何,经过 depth(v) 次旋转后, v 最终总能成为树根
重新审视图 2 的最坏实例不难发现,这一访问序列导致 Ω(n) 平均单次访问时间的原因,可以解释为:
在这一可持续重复的过程中,二叉搜索树的高度始终不小于 n/2
而且,至少有一半的节点在接受访问时,不仅没有如最初设想的那样靠近树根, 而且反过来恰恰处于最底层
从树高的角度看,问题根源也可再进一步地解释为:
在持续访问的过程中, 树高依算术级数逐步从 n - 1 递减至 n/2 ,然后再逐步递增回到 n - 1
那么, 采用上述双层伸展的策略将每一刚被访问过的节点推至树根, 可否避免如图 2 所示的最坏情况呢?
稍作对比不难看出,就调整之后的局部结构而言, zig-zag 和 zag-zig 调整与此前的逐层伸展完全一致( 亦等效于 AVL 树的双旋调整),而 zig-zig 和 zag-zag 调整则有所不同
事实上,后者才是双层伸展策略优于逐层伸展策略的关键所在
以如图 6(b) 所示的二叉搜索树为例,在 find(1) 操作之后采用逐层调整策略与双层调整策略的效果, 分别如图 (a) 和图 (c) 所示
图 6 双层调整策略的高度折半效果
可见,最深节点( 1)被访问之后再经过双层调整, 不仅同样可将该节点伸展至树根,而且同时可使树的高度接近于减半
就树的形态而言,双层伸展策略可“ 智能” 地“折叠” 被访问的子树分支,从而有效地避免对长分支的连续访问
这就意味着, 即便节点 v 的深度为 Ω(n),双层伸展策略既可将 v 推至树根, 亦可令对应分支的长度以几何级数( 大致折半)的速度收缩
图 7 则给出了一个节点更多、更具一般性的例子,从中可更加清晰地看出这一效果
图 7 伸展树中较深的节点一旦被访问到,对应分支的长度将随即减半
尽管在任一时刻伸展树中都可能存在很深的节点,但与含羞草类似地, 一旦这类“ 坏” 节点被“碰触” 到, 经过随后的双层伸展, 其对应的分支都会收缩至长度大致折半
于是, 即便每次都“ 恶意地” 试图访问最底层节点,最坏情况也不会持续发生
可见,伸展树虽不能杜绝最坏情况的发生, 却能有效地控制最坏情况发生的频度,从而在分摊意义下保证整体的高效率
更准确地, Tarjan 等人采用势能分析法( potential analysis)也已证明,在改用“双层伸展”策略之后,伸展树的单次操作均可在分摊的 O(logn) 时间内完成