map和set
零.前置知识扩展
1. 搜索的方式:
(1).暴力查找
(2).排序+二分查找 -> 底层是数组,插入和删除代价大O(N)
(3).搜索树 -> 二叉搜索树(O(N)->平衡树(AVL树、红黑树)[内存]0(logN)->多叉平衡树(B树系列)[硬盘]内存磁盘
(4).哈希
(5).后续还有以表和字典树
一.关联式容器
在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?
关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高。
vector/list/deque…序列式容器;单纯的存储数据,存储的数据和数据之前没啥关联
map/set…关联式容器;不仅仅是存储数据,一般还可以查找数据,存储的数据和数据之间很强关联性
二.键值对
**用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。**比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。
SGI-STL中关于键值对的定义:
template <class T1, class T2>
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair() : first(T1()), second(T2())
{}
pair(const T1& a, const T2& b) : first(a), second(b)
{}
};
三.树形结构的关联式容器
根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一个容器。
(一).set
- K模型搜索树(底层用的红黑树);
- set不允许修改).
1. set的介绍
- 翻译:
- set是按照一定次序存储元素的容器
- 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。
set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。- 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
- set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
- set在底层是用二叉搜索树(红黑树)实现的。
- 注意:
与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对。
set中插入元素时,只需要插入value即可,不需要构造键值对。
set中的元素不可以重复(因此可以使用set进行去重)。
**使用set的迭代器遍历set中的元素,可以得到有序序列。**中序是升序。
set中的元素默认按照小于来比较
set中查找某个元素,时间复杂度为:
l o g 2 n log_2 n log2nset中的元素不允许修改
set中的底层使用二叉搜索树(红黑树)来实现。
2. set的使用
(1).set的模板参数列表
T: set中存放元素的类型,实际在底层存储<value, value>的键值对。
Compare:set中元素默认按照小于来比较
Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理
(2).set的构造
(3).set的迭代器(迭代器走的中序(默认升序))
(4).set的容量
(5).set修改操作
(6).set的使用举例
#include <set>
void TestSet()
{
// 用数组array中的元素构造set
int array[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0, 1, 3, 5, 7, 9, 2, 4, 6, 8, 0 };
set<int> s(array, array + sizeof(array) / sizeof(array));
//set能用vector的迭代器区间去构造,这个在库内的实现是一个模板,内部遍历vector然后插入set.
cout << s.size() << endl;
// 正向打印set中的元素,从打印结果中可以看出:set可去重
for (auto& e : s)
cout << e << " ";
cout << endl;
// 使用迭代器逆向打印set中的元素
for (auto it = s.rbegin(); it != s.rend(); ++it)
cout << *it << " ";
cout << endl;
// set中值为3的元素出现了几次
cout << s.count(3) << endl;
}
(二).map
- KV模型的搜索树(底层用红黑黑树)
1. map的介绍
翻译:
- map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素。
- 在map中,键值key通常用于排序和惟一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair:
typedef pair<const key, T> value_type;- 在内部,map中的元素总是按照键值key进行比较排序的。
- map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。
- map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。
- map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。
2. map的使用
(1).map的模板参数说明
- Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)
- Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器
- 注意:在使用map时,需要包含头文件。
(2).map的构造
(3).map的迭代器
(4).map的容量与元素访问
问题:当key不在map中时,通过operator获取对应value时会发生什么问题?
注意:在元素访问时,有一个与operator[]类似的操作at()(该函数不常用)函数,都是通过key找到与key对应的value然后返回其引用,不同的是:当key不存在时,operator[]用默认value与key构造键值对然后插入,返回该默认value,at()函数直接抛异常。
(5).map中元素的修改
#include <string>
#include <map>
#include <iostream>
using namespace std;
void TestMap()
{
map<string, string> m;
// 向map中插入元素的方式:
// 将键值对<"peach","桃子">插入map中,用pair直接来构造键值对
m.insert(pair<string, string>("peach", "桃子"));
// 将键值对<"peach","桃子">插入map中,用make_pair函数来构造键值对
m.insert(make_pair("banan", "香蕉"));
// 借用operator[]向map中插入元素
/*
operator[]的原理是:
用<key, T()>构造一个键值对,然后调用insert()函数将该键值对插入到map中
如果key已经存在,插入失败,insert函数返回该key所在位置的迭代器
如果key不存在,插入成功,insert函数返回新插入元素所在位置的迭代器
operator[]函数最后将insert返回值键值对中的value返回
*/
// 将<"apple", "">插入map中,插入成功,返回value的引用,将“苹果”赋值给该引 用结果,
m["apple"] = "苹果";
// key不存在时抛异常
//m.at("waterme") = "水蜜桃";
cout << m.size() << endl;
// 用迭代器去遍历map中的元素,可以得到一个按照key排序的序列
for (auto& e : m)
cout << e.first << "--->" << e.second << endl;
cout << endl;
// map中的键值对key一定是唯一的,如果key存在将插入失败
auto ret = m.insert(make_pair("peach", "桃色"));
if (ret.second)
cout << "<peach, 桃色>不在map中, 已经插入" << endl;
else
cout << "键值为peach的元素已经存在:" << ret.first->first << "--->"
<< ret.first->second << " 插入失败" << endl;
// 删除key为"apple"的元素
m.erase("apple");
if (1 == m.count("apple"))
cout << "apple还在" << endl;
else
cout << "apple被吃了" << endl;
}
- 【总结】
-
map中的的元素是键值对
-
map中的key是唯一的,并且不能修改.value可以修改(即pair中second成员)
-
默认按照小于的方式对key进行比较
-
map中的元素如果用迭代器去遍历,可以得到一个有序的序列.中序遍历,按照key(即first)的升序
-
map的底层为平衡搜索树(红黑树),查找效率比较高
O ( l o g 2 N ) O(log_2 N) O(log2N) -
支持[]操作符,operator[]中实际进行插入查找。
(三).multiset
- 不需要刻意学习,除了插入相等的值不会失败剩下的接口与set类似
1. multiset的介绍
- 头文件还是set
- 和set区别:
- 1.插入时,允许相等的值插入(允许键值冗余)
- 2.find查找x时,多个x在树中,返回中序第一个x(注:相等的值一定是连续的)
- [翻译]:
- multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
- 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除。
- 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序。(同set)
- multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列。
- multiset底层结构为二叉搜索树(红黑树)。
- 注意:
multiset中再底层中存储的是<value, value>的键值对
mtltiset的插入接口中只需要插入即可
与set的区别是,multiset中的元素可以重复,set是中value是唯一的
使用迭代器对multiset中的元素进行遍历,可以得到有序的序列(同set)
multiset中的元素不能修改
在multiset中找某个元素,时间复杂度为
O ( l o g 2 N ) O(log_2 N) O(log2N)multiset的作用:可以对元素进行排序
2. multiset的使用
此处只简单演示set与multiset的不同,其他接口接口与set相同,同学们可参考set。
#include <set>
void TestSet()
{
int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };
// 注意:multiset在底层实际存储的是<int, int>的键值对
multiset<int> s(array, array + sizeof(array) / sizeof(array[0]));
for (auto& e : s)
cout << e << " ";
cout << endl;
return 0;
}
(四).multimap
- 和map使用的唯一区别没有[]
1.multimap的介绍
- 翻译:
- Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对<key,value>,其中多个键值对之间的key是可以重复的。
- 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起,value_type是组合key和value的键值对:
typedef pair<const Key, T> value_type;
- 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对key进行排序的。(同map )
- multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代器直接遍历multimap中的元素可以得到关于key有序的序列。
- multimap在底层用二叉搜索树(红黑树)来实现。
注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以重复的。
2. multimap的使用
multimap中的接口可以参考map,功能都是类似的。
注意:
- multimap中的key是可以重复的。
- multimap中的元素默认将key按照小于来比较
- multimap中没有重载operator[]操作
- 使用时与map包含的头文件相同:
(五).在OJ中的使用
1.随机链表的复制
/*
// Definition for a Node.
class Node {
public:
int val;
Node* next;
Node* random;
Node(int _val) {
val = _val;
next = NULL;
random = NULL;
}
};
*/
class Solution {
public:
Node* copyRandomList(Node* head) {
map<Node*,Node*> nodeMap;
Node* copyhead=nullptr,*copytail=nullptr;
Node* cur=head;
while(cur)
{
if(copytail==nullptr)
{
copyhead=copytail=new Node(cur->val);
}
else
{
copytail->next=new Node(cur->val);
copytail=copytail->next;
}
//原节点和拷贝节点map kv存储
nodeMap[cur]=copytail;
cur=cur->next;
}
//处理random
cur=head;
Node* copy=copyhead;
while(cur)
{
if(cur->random==nullptr)
{
copy->random=nullptr;
}
else
{
copy->random=nodeMap[cur->random];
}
cur=cur->next;
copy=copy->next;
}
return copyhead;
}
};
2. 环形链表 II
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* cur=head;
set<ListNode*> s;
while(cur)
{
auto p=s.insert(cur);
if(p.second)
{
cur=cur->next;
}
else
{
return cur;
}
}
return nullptr;
}
};
3. 前K个高频单词
- 解法一:stable_sort稳定排序
class Solution {
public:
struct Compare {
//升序 <
//降序 >
bool operator()(const pair<string, int>& x,const pair<string, int>& y)
{
return x.second > y.second;
}
};
vector<string> topKFrequent(vector<string>& words, int k) {
map<string, int> countMap;
for (auto e : words)
{
countMap[e]++;
}
vector<pair<string, int>> v(countMap.begin(), countMap.end());
stable_sort(v.begin(), v.end(), Compare());
vector<string> strV;
for (int i = 0; i < k; ++i)
{
strV.push_back(v[i].first);
}
return strV;
}
};
- 解法二:仿函数重载比较大小
class Solution {
public:
struct Compare {
//升序 <
//降序 >
bool operator()(const pair<string, int>& x,const pair<string, int>& y)
{
return x.second > y.second||(x.second == y.second&&x.first<y.first);
}
};
vector<string> topKFrequent(vector<string>& words, int k) {
map<string, int> countMap;
for (auto e : words)
{
countMap[e]++;
}
vector<pair<string, int>> v(countMap.begin(), countMap.end());
sort(v.begin(), v.end(), Compare());
vector<string> strV;
for (int i = 0; i < k; ++i)
{
strV.push_back(v[i].first);
}
return strV;
}
};
4. 两个数组的交集
- 解法一:依次比较法
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
// 先去重
set<int> s1;
for (auto e : nums1)
{
s1.insert(e);
}
set<int> s2;
for (auto e : nums2)
{
s2.insert(e);
}
// set排过序,依次比较,小的一定不是交集,相等的是交集
auto it1 = s1.begin();
auto it2 = s2.begin();
vector<int> ret;
while (it1 != s1.end() && it2 != s2.end())
{
if (*it1 < *it2)
{
it1++;
}
else if (*it2 < *it1)
{
it2++;
}
else
{
ret.push_back(*it1);
it1++;
it2++;
}
}
return ret;
}
};
- 解法二:先分别去重,再插入
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
set<int> s1(nums1.begin(),nums1.end());
set<int> s2(nums2.begin(),nums2.end());
vector<int> ret;
for(auto e:s2)
{
auto p=s1.insert(e);
if(p.second==false)
ret.push_back(e);
}
return ret;
}
};
四.底层结构
前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。
1. AVL 树
(1).AVL树的概念
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- **左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)**AVL树不是必须有平衡因子(平衡因子是它选择实现的一种方式)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。
(2).AVL树节点的定义
AVL树节点的定义:
template<class K, class V>
struct AVLTreeNode
{
pair<K, V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf;//balence factor平衡因子
AVLTreeNode(const pair<K,V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{}
};
(3).AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。
那么AVL树的插入过程可以分为两步:
- 按照二叉搜索树的方式插入新节点
- 调整节点的平衡因子
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//更新平衡因子
while (parent)
{
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//继续向上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//不平衡了,旋转处理
if (parent->_bf == 2 && cur->_bf == 1)//插入较高右子树右侧(左旋)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)//插入较高左子树左侧(右旋)
{
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)//插入较高右子树的左侧(先右单旋再左单旋)
{
RotateRL(parent);
}
else//插入较高左子树的右侧(先左单旋再右单旋)
{
RotateLR(parent);
}
break;
}
else
{
assert(false);
}
}
return true;
}
(4).AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
- 新节点插入较高左子树的左侧—左左:右单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if(subRL) //防止野指针访问
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
parent->_bf = subR->_bf = 0;
}
- 新节点插入较高右子树的右侧—右右:左单旋
实现及情况考虑可参考右单旋。
- 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
// 若⾼度h为0时,即上图中60即为新插⼊,60既是psubLR⼜是新插⼊数据.
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)//subL为新插入数据时
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
subL->_bf = -1;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == -1)
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
else
{
assert(false);
}
}
- 新节点插入较高右子树的左侧—右左:先右单旋再左单旋
参考右左双旋。
(5).AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
- 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树 - 验证其为平衡树
- 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
- 节点的平衡因子是否计算正确
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
int Height()
{
return _Height(_root);
}
private:
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
// 空树也是AVL树
if (nullptr == root)
return true;
// 计算root节点的平衡因子:即root左右子树的高度差
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与root的平衡因子不相等,或者root平衡因子的绝对值超过1,则一定不是AVL树
if (abs(diff) >= 2) //abs算绝对值
{
cout <<root->_kv.first<< "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_kv.first << "平衡因子差异常" << endl;
return false;
}
// root的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
-
验证用例
请同学们结合上述代码按照以下的数据次序,自己动手画AVL树的创建过程,验证代码是否有漏洞。
-
常规场景1
{16, 3, 7, 11, 9, 26, 18, 14, 15} -
特殊场景2
{4, 2, 6, 1, 3, 5, 15, 7, 16, 14}
-
(6).AVL树的删除(了解)
因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不过与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现学生们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。
(7).AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
(8).AVL实现
#pragma once
#include<iostream>
#include<assert.h>
#include<vector>
using namespace std;
template<class K, class V>
struct AVLTreeNode
{
pair<K, V> _kv;
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
int _bf;//balence factor平衡因子
AVLTreeNode(const pair<K,V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
{}
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
AVLTree() = default;
AVLTree(const AVLTree<K, V>& t)
{
_root = Copy(t._root);
}
//现代写法
AVLTree<K, V>& operator=(const AVLTree<K, V> t)
{
swap(_root, t._root);
return *this;
}
~AVLTree()
{
Destroy(_root);
_root = nullptr;
}
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//更新平衡因子
while (parent)
{
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
//继续向上更新
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//不平衡了,旋转处理
if (parent->_bf == 2 && cur->_bf == 1)//插入较高右子树右侧(左旋)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)//插入较高左子树左侧(右旋)
{
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)//插入较高右子树的左侧(先右单旋再左单旋)
{
RotateRL(parent);
}
else//插入较高左子树的右侧(先左单旋再右单旋)
{
RotateLR(parent);
}
break;
}
else
{
assert(false);
}
}
return true;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBalanceTree()
{
return _IsBalanceTree(_root);
}
int Height()
{
return _Height(_root);
}
int Size()
{
return _Size(_root);
}
private:
int _Size(Node* root)
{
if (root == nullptr)
return 0;
return _Size(root->_left) + _Size(root->_right) + 1;
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool _IsBalanceTree(Node* root)
{
// 空树也是AVL树
if (nullptr == root)
return true;
// 计算root节点的平衡因子:即root左右子树的高度差
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与root的平衡因子不相等,或者root平衡因子的绝对值超过1,则一定不是AVL树
if (abs(diff) >= 2) //abs算绝对值
{
cout <<root->_kv.first<< "高度差异常" << endl;
return false;
}
if (root->_bf != diff)
{
cout << root->_kv.first << "平衡因子差异常" << endl;
return false;
}
// root的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
void _InOrder(Node* root) //root不能弄成缺省值,this是形参这块用不了
{ //3种办法:1.友元2.get3.套一层
if (root == nullptr) //类里面写递归都会套一层
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if(subRL) //防止野指针访问
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
parent->_bf = subR->_bf = 0;
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR) //防止野指针访问
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
parent->_bf = subL->_bf = 0;
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)//subR为新插入数据时
{
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
subR->_bf = 1;
subRL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 0)//subL为新插入数据时
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
subL->_bf = -1;
subLR->_bf = 0;
parent->_bf = 0;
}
else if (bf == -1)
{
subL->_bf = 0;
subLR->_bf = 0;
parent->_bf = 1;
}
else
{
assert(false);
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newRoot = new Node(root->_kv);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
}
private:
Node* _root = nullptr;
};
2. 红黑树
(1).红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
(2).红黑树的性质
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的,即:一条路径中,没有连续红色节点
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点,即:每条路径黑色节点数量是相等
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点–NIL结点)
思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?
*最短路径 2>=最长路径
- 注:
AVL – 严格平衡
红黑 – 近似平衡
(3).红黑树节点的定义
// 节点的颜色
enum Color{RED, BLACK};
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _color(color)
{}
RBTreeNode<ValueType>* _pLeft; // 节点的左孩子
RBTreeNode<ValueType>* _pRight; // 节点的右孩子
RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)
ValueType _data; // 节点的值域
Color _color; // 节点的颜色
};
思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?
答:插入黑色结点一定违反规则4,且难调整;插入红色结点用可能规则3/2,容易调整,有可能不违反任何规则。
(4).红黑树结构
为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent 域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:
(5).红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
-
按照二叉搜索的树规则插入新节点
template<class ValueType> class RBTree { //…… bool Insert(const ValueType& data) { PNode& pRoot = GetRoot(); if (nullptr == pRoot) { pRoot = new Node(data, BLACK); // 根的双亲为头节点 pRoot->_pParent = _pHead; _pHead->_pParent = pRoot; } else { // 1. 按照二叉搜索的树方式插入新节点 // 2. 检测新节点插入后,红黑树的性质是否造到破坏, // 若满足直接退出,否则对红黑树进行旋转着色处理 } // 根节点的颜色可能被修改,将其改回黑色 pRoot->_color = BLACK; _pHead->_pLeft = LeftMost(); _pHead->_pRight = RightMost(); return true; } private: PNode& GetRoot(){ return _pHead->_pParent;} // 获取红黑树中最小节点,即最左侧节点 PNode LeftMost(); // 获取红黑树中最大节点,即最右侧节点 PNode RightMost(); private: PNode _pHead; };
-
检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
parent,cur一定是红色,grandfather一定为黑色;uncle可能为黑可能为红可能不存在.
- 情况一: cur为红,p为红,g为黑,u存在且为红
cur和p均为红,违反了性质三,此处能否将p直接改为黑?
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
- 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑,cur是p左孩子
解决方式:
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色–p变黑,g变红- 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑,cur是p右孩子
解决方式:
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2 -
红黑树的删除
红黑树的删除本节不做讲解,有兴趣的同学可参考:《算法导论》或者《STL源码剖析》
http://www.cnblogs.com/fornever/archive/2011/12/02/2270692.htm -
红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。 -
红黑树的应用
- C++ STL库 – map/set、mutil_map/mutil_set
- Java 库
- linux内核
- 其他一些库
http://www.cnblogs.com/yangecnu/p/Introduce-Red-Black-Tree.htm
-
红黑树实现
#pragma once
#include<iostream>
#include<assert.h>
#include<vector>
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
pair<K, V> _kv;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
: _kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
template<class K, class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
RBTree() = default;
RBTree(const RBTree<K, V>& t)
{
_root = Copy(t._root);
}
//现代写法
RBTree<K, V>& operator=(const RBTree<K, V> t)
{
swap(_root, t._root);
return *this;
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
// 新增结点颜色给红色
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
// g
// p u
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
//u存在且为红->变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
//1.parent不存在,cur就是根了,出去后把根处理成黑的,结束
//2.parent存在,且为黑,结束
//3.parent存在,且为红,继续循环处理
}
else
{
//u存在且为黑或不存在->旋转+变色
if (cur == parent->_left)
{
//单旋
// g
// p u
//c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//双旋
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
// g
// u p
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
//u存在且为红->变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
//1.parent不存在,cur就是根了,出去后把根处理成黑的,结束
//2.parent存在,且为黑,结束
//3.parent存在,且为红,继续循环处理
}
else
{
//u存在且为黑或不存在->旋转+变色
if (cur == parent->_right)
{
//单旋
// g
// u p
// c
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//双旋
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
int Height()
{
return _Height(_root);
}
int Size()
{
return _Size(_root);
}
bool IsBalance()
{
if (_root == nullptr)
return true;
if (_root->_col == RED)
{
return false;
}
//随便找一条路径做参考值
int refNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++refNum;
}
cur = cur->_left;
}
return Check(_root, 0, refNum);
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
private:
bool Check(Node* root, int blackNum, const int refNum)
{
if (root == nullptr)
{
//cout << blackNum << endl;
if (refNum != blackNum)
{
cout << "存在黑色节点的数量不相等的路径" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << root->_kv.first << "存在连续的红色节点" << endl;
return false;
}
if (root->_col == BLACK)
{
blackNum++;
}
return Check(root->_left, blackNum, refNum)
&& Check(root->_right, blackNum, refNum);
}
int _Size(Node* root)
{
if (root == nullptr)
return 0;
return _Size(root->_left) + _Size(root->_right) + 1;
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
void _InOrder(Node* root) //root不能弄成缺省值,this是形参这块用不了
{ //3种办法:1.友元2.get3.套一层
if (root == nullptr) //类里面写递归都会套一层
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL) //防止野指针访问
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR) //防止野指针访问
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newRoot = new Node(root->_kv);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
}
private:
Node* _root = nullptr;
};
- 红黑树模拟实现STL中的map与set
- RBTree.h
#pragma once
#include<iostream>
#include<assert.h>
#include<vector>
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
RBTreeNode(const T& data)
: _data(data)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
template<class T,class Ref,class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
Node* _root;//解决--end()用
RBTreeIterator() = default;
RBTreeIterator(Node* node, Node* root)
:_node(node)
,_root(root)
{}
Self& operator++()
{
//1.右子树不为空
if (_node->_right)
{
Node* leftMost = _node->_right;
while (leftMost->_left)
{
leftMost = leftMost->_left;
}
_node = leftMost;
}
//2.右子树为空(代表当前节点所在的子树访问完了)
//沿着到根节点的路径查找,孩子是父亲左的那个祖先节点就是下一个要访问的节点
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self& operator--()
{
// --end(),特殊处理,走到中序最后一个节点,整棵树的最右节点
if (_node == nullptr)
{
Node* rightMost = _root;
while (rightMost && rightMost->_right)
{
rightMost = rightMost->_right;
}
_node = rightMost;
}
//1.左子树不为空
else if (_node->_left)
{
Node* rightMost = _node->_left;
while (rightMost->_right)
{
rightMost = rightMost->_right;
}
_node = rightMost;
}
//2.左子树为空(代表当前节点所在的子树访问完了)
//沿着到根节点的路径查找,孩子是父亲右的那个祖先节点就是下一个要访问的节点
else
{
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && cur == parent->_left)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Ref& operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator!=(const Self& s)
{
return s._node != _node;
}
bool operator==(const Self& s)
{
return s._node == _node;
}
};
//第一个模板参数传的都是key;
//set第二个模板参数传的还是key;map第二个模板参数传的pair<key, value>;
template<class K, class T,class KeyOfT>//K是Find,Erase用的;T是Insert,Node用的;KeyOfT拿出T中的key比较时用;
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef RBTreeIterator<T, T&, T*> Iterator;
typedef RBTreeIterator<T, const T&, const T*> ConstIterator;
ConstIterator Begin() const
{
Node* leftMost = _root;
while (leftMost && leftMost->_left)
{
leftMost = leftMost->_left;
}
return ConstIterator(leftMost,_root);
}
ConstIterator End() const
{
return ConstIterator(nullptr,_root);
}
Iterator Begin()
{
Node* leftMost = _root;
while (leftMost && leftMost->_left)
{
leftMost = leftMost->_left;
}
return Iterator(leftMost, _root);
}
Iterator End()
{
return Iterator(nullptr, _root);
}
RBTree() = default;
//类里面可以直接写类名,不写模板参数
//RBTree<K, T, KeyOfT>等价RBTree
RBTree(const RBTree& t)
{
_root = Copy(t._root);
}
//现代写法
RBTree& operator=(const RBTree t)
{
swap(_root, t._root);
return *this;
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
pair<Iterator,bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return { Begin(),true }; //等价return make_pair(Iterator(_root,_root),true);
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(Iterator(cur, _root), false);
}
}
cur = new Node(data);
Node* newnode = cur;
// 新增结点颜色给红色
cur->_col = RED;
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
// g
// p u
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
//u存在且为红->变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
//1.parent不存在,cur就是根了,出去后把根处理成黑的,结束
//2.parent存在,且为黑,结束
//3.parent存在,且为红,继续循环处理
}
else
{
//u存在且为黑或不存在->旋转+变色
if (cur == parent->_left)
{
//单旋
// g
// p u
//c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//双旋
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
// g
// u p
Node* uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
//u存在且为红->变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
//1.parent不存在,cur就是根了,出去后把根处理成黑的,结束
//2.parent存在,且为黑,结束
//3.parent存在,且为红,继续循环处理
}
else
{
//u存在且为黑或不存在->旋转+变色
if (cur == parent->_right)
{
//单旋
// g
// u p
// c
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
//双旋
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(Iterator(newnode, _root), true);
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
int Height()
{
return _Height(_root);
}
int Size()
{
return _Size(_root);
}
bool IsBalance()
{
if (_root == nullptr)
return true;
if (_root->_col == RED)
{
return false;
}
//随便找一条路径做参考值
int refNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++refNum;
}
cur = cur->_left;
}
return Check(_root, 0, refNum);
}
Iterator Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return Iterator(cur,_root);
}
}
return End();
}
private:
bool Check(Node* root, int blackNum, const int refNum)
{
if (root == nullptr)
{
//cout << blackNum << endl;
if (refNum != blackNum)
{
cout << "存在黑色节点的数量不相等的路径" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
cout << root->_kv.first << "存在连续的红色节点" << endl;
return false;
}
if (root->_col == BLACK)
{
blackNum++;
}
return Check(root->_left, blackNum, refNum)
&& Check(root->_right, blackNum, refNum);
}
int _Size(Node* root)
{
if (root == nullptr)
return 0;
return _Size(root->_left) + _Size(root->_right) + 1;
}
int _Height(Node* root)
{
if (root == nullptr)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
void _InOrder(Node* root) //root不能弄成缺省值,this是形参这块用不了
{ //3种办法:1.友元2.get3.套一层
if (root == nullptr) //类里面写递归都会套一层
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL) //防止野指针访问
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR) //防止野指针访问
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newRoot = new Node(root->_kv);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
}
private:
Node* _root = nullptr;
};
- MySet.h
#pragma once
#include"RBTree.h"
namespace bit
{
template<class K>
class set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;//模板没有实例化,不知道是静态成员变量还是类型
typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;//模板没有实例化,不知道是静态成员变量还是类型
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
pair<iterator, bool> insert(const K& key)
{
return _t.Insert(key);
}
iterator find(const K& key)
{
return _t.Find(key);
}
private:
RBTree<K, const K, SetKeyOfT> _t;
};
}
- MyMap.h
#pragma once
#include"RBTree.h"
namespace bit
{
template<class K,class V>
class map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;//模板没有实例化,不知道是静态成员变量还是类型
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;//模板没有实例化,不知道是静态成员变量还是类型
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
iterator find(const K& key)
{
return _t.Find(key);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert({ key,V() });//等价_t.insert(make_pair(key,V()));
return (ret.first)->second;
}
private:
RBTree<K, pair<const K,V>, MapKeyOfT> _t;
};
}