深度学习 | 如何理解混淆矩阵中的TP,FN,FP,TN【看这一篇就够了】

0-前言

我在做深度学习中的目标检测时,模型完成训练后,生成的文件中,会有confusion_matrix.png,这个文件。虽然我知道这是混淆矩阵,正如它的名字,时间一久,就忘记了相关的概念,特别是会混淆FP和FN的概念。

1-什么是混淆矩阵?

1.1 概念

混淆矩阵是一种用于评估分类模型性能的工具,特别是在监督学习中。它通过将模型的预测结果与实际标签进行对比,以表格的形式展示模型在不同类别上的分类情况。混淆矩阵可以帮助我们直观地了解模型的分类性能,包括正确分类和错误分类的情况。

1.2 结构

混淆矩阵的行表示模型的预测类别,列表示实际的类别。对于一个二分类问题,混淆矩阵是一个 2x2 的矩阵;对于多分类问题,它是一个 nxn 的矩阵,其中 n 是类别的数量。

<1> 二分类问题的混淆矩阵

对于二分类问题,混淆矩阵如下所示:

Positive (实际) Negative (实际)
Positive (预测) TP (True Positive) FP (False Positive)
Negative (预测) FN (False Negative) TN (True Negative)
<2> 多分类问题的混淆矩阵

对于多分类问题,混淆矩阵的每一行表示模型的预测类别,每一列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一束满天星⁢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值