0-前言
我在做深度学习中的目标检测时,模型完成训练后,生成的文件中,会有confusion_matrix.png,这个文件。虽然我知道这是混淆矩阵,正如它的名字,时间一久,就忘记了相关的概念,特别是会混淆FP和FN的概念。
1-什么是混淆矩阵?
1.1 概念
混淆矩阵是一种用于评估分类模型性能的工具,特别是在监督学习中。它通过将模型的预测结果与实际标签进行对比,以表格的形式展示模型在不同类别上的分类情况。混淆矩阵可以帮助我们直观地了解模型的分类性能,包括正确分类和错误分类的情况。
1.2 结构
混淆矩阵的行表示模型的预测类别,列表示实际的类别。对于一个二分类问题,混淆矩阵是一个 2x2 的矩阵;对于多分类问题,它是一个 nxn 的矩阵,其中 n 是类别的数量。
<1> 二分类问题的混淆矩阵
对于二分类问题,混淆矩阵如下所示:
Positive (实际) | Negative (实际) | |
---|---|---|
Positive (预测) | TP (True Positive) | FP (False Positive) |
Negative (预测) | FN (False Negative) | TN (True Negative) |
<2> 多分类问题的混淆矩阵
对于多分类问题,混淆矩阵的每一行表示模型的预测类别,每一列