一、前言
该文章仅作为个人学习使用
项目源代码:Python 项目 - 使用 Pandas 和 OpenCV 进行颜色检测 - DataFlair (data-flair.training)
数据集:color-names/output/colors.csv at master · codebrainz/color-names (github.com)
二、正文
Python颜色检测项目
今天的项目将是令人兴奋和有趣的构建。我们将使用颜色,您将在整个项目中了解许多概念。颜色检测是识别物体所必需的,它也被用作各种图像编辑和绘图应用程序中的工具。
什么是颜色检测?
颜色检测是检测任何颜色名称的过程。很简单,不是吗?嗯,对于人类来说,这是一项非常容易的任务,但对于计算机来说,这并不简单。人眼和大脑协同工作,将光转化为颜色。存在于我们眼睛中的光感受器将信号传递到大脑。然后我们的大脑识别颜色。从孩提时代起,我们就用它们的颜色名称绘制了某些灯。我们将使用相同的策略来检测颜色名称。
关于 Python 项目
在这个颜色检测Python项目中,我们将构建一个应用程序,通过该应用程序,您可以通过单击颜色来自动获取颜色的名称。因此,我们将有一个包含颜色名称及其值的数据文件。然后我们将计算每个颜色的距离,并找到最短的一个。
数据集
颜色由三原色组成;红、绿色和蓝色。在计算机中,我们将每个颜色值定义在0到255的范围内。我们可以用多少种方法来定义一种颜色?答案是256*256*256 = 16581375。大约有1650万种不同的方式来表示颜色。在我们的数据集中,我们需要将每个颜色的值与它们对应的名称进行映射。但是别担心,我们不需要映射所有的值。我们将使用一个包含RGB值及其相应名称的数据集。我们数据集的CSV文件取自此链接:
csv文件包括865个颜色名称沿着以及它们的RGB和十六进制值。
先决条件
在开始这个Python项目的源代码之前,你应该熟悉Python的计算机视觉库OpenCV和Pandas。
OpenCV、Pandas和numpy是Python中这个项目所必需的Python包。要安装它们,只需在终端中运行以下pip命令:
pip install opencv-python numpy pandas
在Python中构建项目的步骤-颜色检测
以下是在Python中构建可以检测颜色的应用程序的步骤:
1.下载并解压缩zip文件
项目文件夹包含3个文件:
- Color_detection.py -我们项目的主要源代码。
- Colorpic.jpg
- csv -包含我们数据集的文件。
2.从用户获取图像
我们使用argparse库来创建一个参数解析器。我们可以直接从命令提示符给出一个图像路径:
导入argparseap = argparse。ArgumentParser()AP.add_argument('-i'字符串, '--image',required=真,帮助=“图像路径”)参数= vars(AP.parse_args())img_path = args