在全球经济深度交融与科技迅猛革新的当下,数字化、网络化、智能化的时代洪流正全方位重塑产业格局。市场竞争日趋激烈,客户需求愈发多元且多变,传统产业链模式的固有弊端逐渐凸显,如运作效率低下、协同配合不畅、响应市场变化迟缓等,已难以适应新时代的发展需求。在此形势下,产业链 “链式” 转型迫在眉睫,成为产业谋求持续发展与竞争优势的必由之路。
追根溯源:产业链 “链式” 转型的时代背景与核心诉求
《工业和信息化部信息化和工业化融合 2025 年工作要点》相关会议明确强调,两化融合是推进新型工业化的核心战略任务与实践方向。一方面,要大力推进数字化、网络化、智能化升级,加速落地重点行业数字化转型实施方案,以场景化、图谱化策略精准推动制造业数字化转型;另一方面,要充分激发企业内生动力,发挥龙头企业引领作用,带动产业链上下游实现深度 “链式” 转型。
所谓产业链上下游 “链式” 转型,本质在于打破企业间的信息桎梏,构建信息共享、协同共进的有机生态。通过数字化技术纽带,将供应商、制造商、分销商、零售商等产业链各环节紧密串联,形成高效协同的统一整体。其核心目标在于全面提升产业链的运作效能,降低运营成本,增强创新能力,进而提升产业在全球市场的综合竞争力,推动产业向高质量发展阶段迈进。
关键设备在产业链中扮演着无可替代的核心角色。以汽车制造产业链为例,生产线上的自动化焊接与冲压设备,其运行的稳定性与可靠性直接关乎汽车的生产质量与产能;而在电子信息产业链,芯片制造的光刻机等关键设备,更是决定了芯片的技术高度与市场竞争力。可以说,关键设备是产业链稳定运行的基石,其运行状态与使用寿命深刻影响着整个产业链的稳定与效益。
精准护航:预测性维护助力关键设备延年益寿
(一)洞察先机:早期故障诊断筑牢设备健康防线
预测性维护借助先进的传感器技术与数据分析技术,实时采集关键设备的运行数据,如温度、振动、压力等关键参数。通过大数据分析与人工智能算法深度挖掘,提前捕捉设备潜在的故障信号。以风力发电产业的风机为例,通过对风机振动与温度数据的持续监测与分析,可提前预判齿轮箱、发电机等关键部件的故障风险,在故障萌芽阶段及时干预,有效遏制故障恶化,从而延长设备使用寿命。
(二)量身定制:精准维护计划优化设备维护策略
传统设备维护多基于固定周期或运行里程的预防性维护模式,常导致过度维护或维护滞后的问题。预测性维护则依据设备实际运行状况与健康状态,运用数据驱动的方法,为设备量身定制精准维护计划。以航空发动机维护为例,通过实时监测发动机运行数据,结合剩余使用寿命预测模型,精确确定维护时机与维护内容,既保障设备可靠性,又避免不必要的维护成本,显著延长设备使用寿命,降低故障率与维修成本。
协同共进:预测性维护推动产业链深度协同
(一)信息互通:搭建产业链上下游信息共享桥梁
预测性维护实现了设备状态信息在产业链上下游的实时共享与高效协同。上游供应商需依据下游制造商的设备需求与运行状态,精准供应原材料与零部件;下游制造商则需向上游反馈设备使用情况,助力供应商优化产品质量。借助预测性维护系统,设备运行数据、故障信息、维护计划等关键信息得以在产业链各环节实时传递。例如在机械制造产业链,机床制造商实时共享机床运行数据给刀具供应商,刀具供应商据此提前准备适配刀具,并提供专业的刀具使用与更换建议,实现双方协同优化。
(二)模式创新:基于预测性维护提升产业链竞争力
基于预测性维护的产业协同模式,为产业链效率与竞争力提升注入新动力。以家电产业链为例,家电生产企业运用预测性维护系统监测管理生产设备,并将维护计划共享给原材料供应商与物流企业。原材料供应商据此调整生产与供货计划,确保原材料及时供应;物流企业依据生产计划灵活安排运输,避免库存积压与物流成本增加。通过这种协同模式,产业链各环节紧密协作,生产效率显著提高,成本有效降低,整体竞争力大幅提升。
砥砺前行:实施预测性维护面临的挑战与应对之策
(一)突破壁垒:跨企业数据共享的困境与解决之道
在产业链 “链式” 转型背景下,跨企业数据共享面临诸多挑战。不同企业的数据标准、安全策略差异,以及设备品牌、型号多样导致的数据接口与协议不兼容,使得设备状态数据共享困难重重。部分企业担忧数据泄露危及商业机密与竞争优势,对数据共享心存顾虑。为突破这些壁垒,需构建跨企业数据共享信任机制与安全保障体系,制定详细的数据共享协议,明确各方权利义务与安全责任,并运用先进的数据加密与访问控制技术,确保数据安全。
(二)统一规范:应对预测性维护标准不统一问题
当前,预测性维护领域缺乏统一的技术标准与规范,涵盖数据采集、分析方法、维护计划制定等多个方面。这导致不同企业的预测性维护系统难以兼容互操作,阻碍产业链上下游协同。例如,不同设备制造商对故障代码定义解释各异,给维修人员带来困扰。解决这一问题,需要行业协会与政府部门牵头,组织企业共同参与制定统一的预测性维护技术标准,确保标准的科学性与实用性,推动产业链协同发展。
(三)合理分配:化解利益分配不均激发企业积极性
在预测性维护实施过程中,产业链上下游企业均需投入资源,但效益分配不均可能影响企业积极性。上游供应商可能因在技术研发投入后未获相应回报而降低参与热情。为解决这一问题,需建立公平合理的利益分配机制,通过企业间充分协商,依据各方在预测性维护中的投入与贡献,科学合理分配收益,同时政府可通过政策引导与资金扶持,激发企业参与的积极性与主动性。
展望未来:预测性维护驱动产业链升级的无限可能
随着数字化技术的飞速发展,预测性维护将在产业链 “链式” 转型与关键设备寿命延长方面发挥更为关键的作用。未来,预测性维护技术将朝着智能化、精准化方向不断演进,实现对关键设备的全方位、深层次监测与分析。同时,工业互联网、5G 等新兴技术的广泛应用,将进一步提升设备状态信息传输与共享的效率与稳定性,为产业链协同提供更强大的技术支撑。
预测性维护不仅是保障关键设备长寿命、高可靠运行的关键手段,更是推动产业链 “链式” 转型、提升产业整体竞争力的核心驱动力。在未来产业发展中,企业应积极拥抱预测性维护技术,深化产业链上下游合作协同,共同应对挑战,开启产业高质量、可持续发展的新篇章。