计算学习理论基础

计算学习理论基础


基础知识

这里写图片描述

与计算理论类似,机器学习也有PAC可辨识,PAC可学习,高效PAC可学习的概念。


有限假设空间

在有限假设空间情形下,可以对PAC学习的样本复杂度在可分,不可分,不可知情形下做出估计。


VC维

增长函数

对于假设空间H,对于m个样本给出的最多标记情形数目称为假设空间的增长函数。
ΠH(m)=maxX{(h(x1),...,h(xm))∣h∈H}\Pi_H(m)=max_X\{(h(x_1),...,h(x_m))|h\in H\}ΠH(m)=maxX{(h(x1),...,h(xm))hH}

打散和VC维

ΠH(m)=2m\Pi_H(m)=2^mΠH(m)=2m则称样本被打散了。
那么,VC为定义为能打散的最大样本集大小。
VC(H)=max⁡{m∣ΠH(m)=2m}VC(H)=\max\{m|\Pi_H(m)=2^m\}VC(H)=max{mΠH(m)=2m}

例题

例1

VC(I(a<x<b))=2VC(I(a<x<b)) = 2VC(I(a<x<b))=2
h[a,b](x)=I(a<x<b)h_{[a, b]}(x)=I(a<x<b)h[a,b](x)=I(a<x<b)的VC维为2,因为容易知道大小为3的数据打不散,因为(x1,+),(x2,−),(x3,+){(x_1, +), (x_2,-), (x_3,+)}(x1,+),(x2,),(x3,+)总是表示不出来。

例2

VC(Rd)=d+1VC(R^d)=d+1VC(Rd)=d+1

例3

supVC(决策树)=+inf⁡sup VC(决策树)=+\infsupVC()=+inf

例4

VC(最邻近)=+inf⁡VC(最邻近) = +\infVC()=+inf

例题来自西瓜书例题或者习题,不是很困难,证明一下可以加强理解。

相关结论

ΠH(m)≤Σi=0d(im)\Pi_H(m) \le \Sigma_{i=0}^d (_i^m)ΠH(m)Σi=0d(im)
ΠH(m)≤(emd)d\Pi_H(m) \le ({em \over d})^dΠH(m)(dem)d

也容易证明,可以作为练习。

Rademacher复杂度及与稳定性,VC维之间的联系

Rademacher复杂度是考虑了数据分布的复杂度。与稳定性,VC维之间存在联系。

定义为
RS(G)=Eσ[sup⁡g∈G1m∑i=1mσig(xi,yi)]{\mathcal{R}}_S(\mathcal{G}) = \mathbb{E}_{\boldsymbol{\sigma}} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i g(\boldsymbol{x}_i, y_i) \right]RS(G)=Eσ[supgGm1i=1mσig(xi,yi)]


计算学习理论基础部分还有VC维的例题还没仔细推导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值