计算学习理论基础
基础知识
与计算理论类似,机器学习也有PAC可辨识,PAC可学习,高效PAC可学习的概念。
有限假设空间
在有限假设空间情形下,可以对PAC学习的样本复杂度在可分,不可分,不可知情形下做出估计。
VC维
增长函数
对于假设空间H,对于m个样本给出的最多标记情形数目称为假设空间的增长函数。
ΠH(m)=maxX{(h(x1),...,h(xm))∣h∈H}\Pi_H(m)=max_X\{(h(x_1),...,h(x_m))|h\in H\}ΠH(m)=maxX{(h(x1),...,h(xm))∣h∈H}
打散和VC维
若ΠH(m)=2m\Pi_H(m)=2^mΠH(m)=2m则称样本被打散了。
那么,VC为定义为能打散的最大样本集大小。
VC(H)=max{m∣ΠH(m)=2m}VC(H)=\max\{m|\Pi_H(m)=2^m\}VC(H)=max{m∣ΠH(m)=2m}
例题
例1
VC(I(a<x<b))=2VC(I(a<x<b)) = 2VC(I(a<x<b))=2
h[a,b](x)=I(a<x<b)h_{[a, b]}(x)=I(a<x<b)h[a,b](x)=I(a<x<b)的VC维为2,因为容易知道大小为3的数据打不散,因为(x1,+),(x2,−),(x3,+){(x_1, +), (x_2,-), (x_3,+)}(x1,+),(x2,−),(x3,+)总是表示不出来。
例2
VC(Rd)=d+1VC(R^d)=d+1VC(Rd)=d+1
例3
supVC(决策树)=+infsup VC(决策树)=+\infsupVC(决策树)=+inf
例4
VC(最邻近)=+infVC(最邻近) = +\infVC(最邻近)=+inf
例题来自西瓜书例题或者习题,不是很困难,证明一下可以加强理解。
相关结论
ΠH(m)≤Σi=0d(im)\Pi_H(m) \le \Sigma_{i=0}^d (_i^m)ΠH(m)≤Σi=0d(im)
ΠH(m)≤(emd)d\Pi_H(m) \le ({em \over d})^dΠH(m)≤(dem)d
也容易证明,可以作为练习。
Rademacher复杂度及与稳定性,VC维之间的联系
Rademacher复杂度是考虑了数据分布的复杂度。与稳定性,VC维之间存在联系。
定义为
RS(G)=Eσ[supg∈G1m∑i=1mσig(xi,yi)]{\mathcal{R}}_S(\mathcal{G}) = \mathbb{E}_{\boldsymbol{\sigma}} \left[ \sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i g(\boldsymbol{x}_i, y_i) \right]RS(G)=Eσ[supg∈Gm1∑i=1mσig(xi,yi)]
计算学习理论基础部分还有VC维的例题还没仔细推导。