1. 目标
- 在这一章当中,
- 我们将学习使用分水岭算法使用基于标记的图像分割
- 我们将看到:cv.watershed()
2.理论
任何灰度图像都可以看作是地形表面,其中高强度表示峰和丘陵,而低强度表示山谷。您开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。随着水的上升,取决于附近的峰值(梯度),来自不同山谷的水,明显具有不同的颜色将开始融合。为避免这种情况,您需要在水合并的位置建立障碍。你继续填补水和建筑障碍的工作,直到所有的山峰都在水下。然后,您创建的障碍为您提供分割结果。这是分水岭背后的“哲学”。您可以访问分水岭上的CMM 网页,以便在某些动画的帮助下了解它。
但是这种方法会因图像中的噪声或任何其他不规则性而给出过度调整结果。因此,OpenCV 实施了一个基于标记的分水岭算法,您可以在其中指定要合并的所有谷点,哪些不合并。这是一种交互式图像分割。我们所做的是为我们知道的对象提供不同的标签。用一种颜色(或强度)标记我们确定为前景或对象的区域,用另一种颜色标记我们确定为背景或非对象的区域,最后标记我们不确定任何内容的区域,用 0 标记它。这是我们的标记。然后应用分水岭算法。然后我们的标记将使用我们给出的标签进行更新,对象的边界将具有-1 的值。
基于分水岭算法的图像分割是一种基于区域的图像分割方法,它将图像分割问题转化为求解连通区域的问题。分水岭算法的灵感来源于地理学中的分水岭概念,即流域的边界。在图像处理中,