语义分割-UNet++

UNet++是对UNet的改进,通过提前上采样和重新设计skip connections来优化医疗图像分割。论文提出深监督机制,允许在不同层次进行损失计算,提高分割精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文原文

UNet++: A Nested U-Net Architecturefor Medical Image Segmentatio

0. 简介

  UNet++也是主要用于医学图像分割网络:

  • 它针对UNet架构增加上采样节点,对encoder部分进行提前上采样;
  • 重新设计了skip connection的连接路径;
  • 加入深监督帮助网络学习;

  作者认为拼接在一起的encoder和decoder的feature map语义相似时,优化器更容易处理。

1. 网络结构

在这里插入图片描述
  UNet++相对于UNet网络,在encoder下采样过程中,在每一层均进行了上采样,因为每个encoder层的语义信息都很重要,不应该只在最深层才上采样。同时,Unet在最深层才上采样,在进行跳跃连接时,会导致语义上不相似的特征图融合在一起。故提前上采样有必要。
  为使得提前上采样的featuremap可以加入网络的学习,在 X 0 , 1 X^{0,1} X0,1, X 0 , 2 X^{0,2} X0,2, X 0 , 3 X^{0,3} X0,3</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值