论文原文
UNet++: A Nested U-Net Architecturefor Medical Image Segmentatio
0. 简介
UNet++也是主要用于医学图像分割网络:
- 它针对UNet架构增加上采样节点,对encoder部分进行提前上采样;
- 重新设计了skip connection的连接路径;
- 加入深监督帮助网络学习;
作者认为拼接在一起的encoder和decoder的feature map语义相似时,优化器更容易处理。
1. 网络结构
UNet++相对于UNet网络,在encoder下采样过程中,在每一层均进行了上采样,因为每个encoder层的语义信息都很重要,不应该只在最深层才上采样。同时,Unet在最深层才上采样,在进行跳跃连接时,会导致语义上不相似的特征图融合在一起。故提前上采样有必要。
为使得提前上采样的featuremap可以加入网络的学习,在 X 0 , 1 X^{0,1} X0,1, X 0 , 2 X^{0,2} X0,2, X 0 , 3 X^{0,3} X0,3</