语义分割-DeepLabv2

DeepLabv2是语义图像分割的深度学习模型,它通过引入空洞卷积和ASPP模块改善了CNN在分割任务中的性能。ASPP利用不同空洞率的卷积融合多尺度信息,解决了小目标分割的问题。此外,模型还结合了全连接条件随机场(CRF)以提高分割的准确性。实验结果显示,DeepLabv2在PASCAL VOC 2012, PASCAL-Context和Cityscapes数据集上取得了优秀的效果。" 120256788,8746620,Feign源码解析:构建实例与HTTP请求流程,"['Java', 'Spring Boot', 'RESTful', 'Feign']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文原文

DeepLab: Semantic Image Segmentation withDeep Convolutional Nets, Atrous Convolution,and Fully Connected CRFs

0. 简介

  DeepLabv2与DeepLabv1非常相似,针对CNN做语义分割的缺点做了些改进:

  • 将hole算法(即空洞卷积)引入了CNN中,解决DCNN重复池化下采样导致分辨率大幅下降,位置信息难以恢复的问题;
  • 将CRF与DCNN结合,解决由于DCNN的空间不变性导致的分割粗糙,细节信息丢失问题;
  • 引入了空洞空间金字塔结构ASPP来融合多尺度的特征图;

  DeepLabv2与DeepLabv1主要不同之处在于DeepLabv2利用ASPP模块成功地融合了多尺度信息。而在DeepLabv1中虽然尝试了利用多尺度信息,但效果并没有提升。

1. 网络结构

在这里插入图片描述
  DeepLabv2整体架构DeepLabv1类似,它的encoder部分基于分类网络VGG-16或ResNet-101实现。
  首先将原图经过利用空洞卷积改进的CNN网络下采样到原来图的 1 8 \frac{1}{8}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值