Python用plotly画图

本文介绍如何利用Python的数据可视化库Plotly创建交互式图表,包括步骤详解和实例展示,帮助读者掌握Plotly的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import plotly.offline as of
import plotly.graph_objs as go

of.offline.init_notebook_mode(connected=True)
trace0 = go.Scatter(
    x=[1, 2, 3, 4],
    y=[10, 15, 13, 17],
    mode='markers'
)
trace1 = go.Scatter(
    x=[1, 2, 3, 4],
    y=[16, 5, 11, 9]
)
data = go.Data([trace0, trace1])
of.plot(data)

在这里插入图片描述

import numpy as np
import plotly.offline as of
import plotly.graph_objs as go
import plotly.plotly as py
N = 100
random_x = np.linspace(0, 1, N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N)-5

# Create traces
trace0 = go.Scatter(
    x = random_x,
    y = random_y0,
    mode = 'markers',
    name = 'markers'
)
trace1 = go.Scatter(
    x = random_x,
    y = random_y1,
    mode = 'lines+markers',
    name = 'lines+markers'
)
trace2 = go.Scatter(
    x = random_x,
    y = random_y2,
    mode = 'lines',
    name = 'lines'
)

data = [trace0, trace1, trace2]
of.plot(data)

在这里插入图片描述

import numpy as np
import plotly.offline as of
import plotly.graph_objs as go
import plotly.plotly as py
#https://plot.ly/python/reference/#layout-xaxis-zerolinecolor  官方文档
day1=[4130,2900,1843,1211,1052,1094,2080,7493,10453,13406,12656,11888,11781,14345,14708,13111,12796,13282,12431,11818,10808,10464,8610,5108,0]
day2=[5125,3479,2268,1541,1274,1047,1659,5237,9199,11019,11670,12677,13066,15714,15597,14613,14271,14903,14418,13441,13112,11473,9013,5264,0]
hours=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
# Create traces
trace0 = go.Scatter(
    x = hours,
    dx=1,
    y = day1,
    text=day1,


    mode='lines+markers',
    name = '工作日'

)
trace1 = go.Scatter(
    x = hours,
    dx=1,
    y = day2,
    text=day2,

    mode = 'lines+markers',
    name = '节假日'
)
data = [trace0, trace1]
# 随时间变化的一天中的订单需求量
layout = go.Layout(title='随时间变化的一天中的订单需求量',
                  titlefont={
                      'size':20
                  },
    xaxis={
    'title':'小时(hours)',
    # 'type':'data', #'date'表示日期型坐标轴
    # 'autorange' : False,  #autorange:bool型或'reversed',控制是否根据横坐标对应的数据自动调整坐标轴范围,默认为True
    'showgrid' : False,
    'titlefont':{
        'size':15
    }

},yaxis={
    'title':'乘客打车需求量',
    'titlefont':{
        'size':15
    }
})
fig = go.Figure(data=data, layout=layout)
of.plot(fig)

在这里插入图片描述

import numpy as np
import plotly.offline as of
import plotly.graph_objs as go
import plotly.plotly as py
#https://plot.ly/python/reference/#layout-xaxis-zerolinecolor  官方文档
day1=[4130,2900,1843,1211,1052,1094,2080,7493,10453,13406,12656,11888,11781,14345,14708,13111,12796,13282,12431,11818,10808,10464,8610,5108,0]
day2=[5125,3479,2268,1541,1274,1047,1659,5237,9199,11019,11670,12677,13066,15714,15597,14613,14271,14903,14418,13441,13112,11473,9013,5264,0]
hours=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]
# Create traces
trace0 = go.Scatter(
    x = hours,
    dx=1,
    y = day1,
    text=day1,
    fill="tonexty",

    mode='lines+markers',
    name = '工作日'

)
trace1 = go.Scatter(
    x = hours,
    dx=1,
    y = day2,
    text=day2,
    fill="tonexty",
    mode = 'lines+markers',
    name = '节假日'
)
data = [trace0, trace1]
# 随时间变化的一天中的订单需求量
layout = go.Layout(title='随时间变化的一天中的订单需求量',
                  titlefont={
                      'size':20
                  },
    xaxis={
    'title':'小时(hours)',
    # 'type':'data', #'date'表示日期型坐标轴
    # 'autorange' : False,  #autorange:bool型或'reversed',控制是否根据横坐标对应的数据自动调整坐标轴范围,默认为True
    'showgrid' : False,  #是否显示网格
    'zeroline' : True,  #是否显示基线,即沿着(0,0)画出x轴和y轴
    'titlefont':{
        'size':15
    }

},yaxis={
    'title':'乘客打车需求量',
    'zeroline' : True,  #是否显示基线,即沿着(0,0)画出x轴和y轴
    'titlefont':{
        'size':15
    }
})
fig = go.Figure(data=data, layout=layout)
of.plot(fig)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值