8:GRU预测数据预处理

本文深入探讨了使用GRU进行时间序列预测时的数据预处理步骤,包括标准化、填充序列、构建输入输出对等关键环节,旨在提升模型预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

# 机器学习预测数据预处理

from pygeohash import encode, decode
import plotly
import numpy as np
import pandas as pd
import math
from matplotlib.path import Path
import numpy as np
import plotly.offline as of
import plotly.graph_objs as go
import chart_studio.plotly as py
import numpy as np
import pandas as pd
import folium
import webbrowser
from folium.plugins import HeatMap
import datetime
import time
import pymysql
import pymysql.cursors
import pandas as pd
import decimal
import geohash

def mysql(geo):
    print('数据库开始读取')
    conn = pymysql.connect(
        host='localhost',
        port=3306,
        user='root',
        passwd='xu19931026',
        db='hk_taxi',
        charset='utf8'
    )
    cursor = conn.cursor()  # 获取游标
    sql = "SELECT DATE_FORMAT(departure_time,'%%Y-%%m-%%d') as demand_time ,left(`geo`,7) as geo,count(0) as count FROM haikou_1 where left(`geo`,6)=%s AND DATE_FORMAT(departure_time,'%%Y-%%m-%%d') BETWEEN '201
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值